An interpreter handling
over effects for Eff

YosHIMURA Hikaru (FH1 &)

hikaru_yoshimura@r.recruit.co.jp

Recruit Marketing Partners Co., Ltd.
October 17, 2020 @ ScalaMatsuri 2020

https://github.com/y-yu/scalamatsuri2020 (e6fc40b)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 1/45

mailto:hikaru_yoshimura@r.recruit.co.jp
https://github.com/y-yu/scalamatsuri2020
mailto:hikaru_yoshimura@r.recruit.co.jp

Table of contents

©® Whoam I?

® Introduction

© Low Level Example

® Monad and Monad Transformer
@ Eff and Interpreter

0 Interpreter Handling over Effects

@ Conclusion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

October 17, 2020 @ ScalaMatsuri 2020

2/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Who am I?

Twitter @_yyu_
Qiita yyu
GitHub y-yu

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp)

An interpreter handling over effects for Eff

October 17, 2020 @ ScalaMatsuri 2020

3/45

https://twitter.com/_yyu_
https://qiita.com/yyu
https://github.com/y-yu
mailto:hikaru_yoshimura@r.recruit.co.jp

Who am I?

Recruit Marketing Partners Co., Ltd.
® StudySapuri ENGLISH server side(Scala)

Quantum Information

® but | don’t know well about Quantum annealing...

® Cryptography & Security

KIEX typesetting
Twitter @_yyu_

Qiita yyu

GitHub y-yu

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 3/45

https://twitter.com/_yyu_
https://qiita.com/yyu
https://github.com/y-yu
mailto:hikaru_yoshimura@r.recruit.co.jp

Concrete case I'll talk about

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 4/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Concrete case I'll talk about

In this talk, we think about one concrete case:

M

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 4/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Concrete case I'll talk about

In this talk, we think about one concrete case:

M

&

44
Read & Write data to database with the transaction

3

® This is very common case in the programming, but there are many ways to do it

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 4/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()
val session = transactionManager.begin()

databaseOperation(
// If you want to rollback,
// call “session.fail®
session

if (transactionManager.commit(session))
/% Successful x/

else
/x Failure x/

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()
val session = transactionManager.begin()

databaseOperation(

// If you want to rollback, . .

// call “session.fail’ ® It’s (maybe) used in tranditional
) sesen languages like C

if (transactionManager.commit(session))
/% Successful x/

else
/x Failure x/

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()
val session = transactionManager.begin()

databaseOperation(
// If you want to rollback,
// call “session.fail®
session

)

if (transactionManager.commit(session))
/% Successful x/

else
/x Failure x/

® It’s (maybe) used in tranditional
languages like C

® You know, that way has some problems:

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()
val session = transactionManager.begin()

databaseOperation(
// If you want to rollback,
// call “session.fail®
session

)

if (transactionManager.commit(session))
/% Successful x/

else
/x Failure x/

® It’s (maybe) used in tranditional
languages like C

® You know, that way has some problems:

Could programmers forget to write begin and commit?

X))

-

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Loan pattern

® If the problem is forgetting, we can use Loan pattern:

def withTransaction(
f: Session => A
): Either[Throwable, A] = {
val session = transactionManager.begin()
val a = f(session)
if (transactionManager.commit(session)) Right(a)
else Left(new RuntimeException())

withTransaction { session =>
something.databaseOperation(session)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 6/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Loan pattern

® If the problem is forgetting, we can use Loan pattern:

def withTransaction(e withTransaction takes a function f
f: Session => A

): Either[Throwable, Al = {
val session = transactionManager.begin()
val a = f(session)
if (transactionManager.commit(session)) Right(a)
else Left(new RuntimeException())

H

withTransaction { session =>
something.databaseOperation(session)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 6/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Loan pattern

® If the problem is forgetting, we can use Loan pattern:

def withTransaction(e withTransaction takes a function f
f: Session => A
): Either[Throwable, Al = { ® And then execute it inside the begin
val session = transactionManager.begin() .
and commit

val a = f(session)
if (transactionManager.commit(session)) Right(a)
else Left(new RuntimeException())

}

withTransaction { session =>
something.databaseOperation(session)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 6/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Loan pattern

® If the problem is forgetting, we can use Loan pattern:

def withTransaction(e withTransaction takes a function f
f: Session => A
): Either[Throwable, Al = { ® And then execute it inside the begin
val session = transactionManager.begin() .
and commit

val a = f(session)
if (transactionManager.commit(session)) Right(a)
else Left(new RuntimeException()) Is Loan pattern the silver bullet?

Ay

withTransaction { session => a0
something.databaseOperation(session) =

}

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 6/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Nested loan pattern

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 7/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Nested loan pattern

® We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =

withTransaction { session => Use withTransaction in
something.databaseOperation(session) . .
} the other withTransaction &=

withTransaction { session =>
/% something using session x/
ops()

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 7/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Nested loan pattern

® We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =

withTransaction { session => Use withTransaction in

something.databaseOperation(session) . .
} the other withTransaction &

withTransaction { session =>
/% something using session x/
ops()

}

® No one wants to do that but it’s allowed... &

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 7/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Nested loan pattern

® We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =
withTransaction { session => Use withTransaction in
something.databaseOperation(session) . .
} the other withTransaction &

withTransaction { session =>
/% something using session x/
ops()

}

® No one wants to do that but it’s allowed... =
® Indeed, we don’t actually “forget” to write begin and commit, but the other problem

remains
® |n addtion, the first low level example also has this problem
October 17, 2020 @ ScalaMatsuri 2020 7/45

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

mailto:hikaru_yoshimura@r.recruit.co.jp

 Yoshimura Hikaru (hikaru_yoshimura@rrecruitcojp) ~ Aninterpreter handling over effects for Eff ~ October 17, 2020 @ ScalaMatsuri 2020 8/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

® We can use map and flatMap instead of raw Loan pattern

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

® We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](
run: Session => A
) {
def map[B](f: A => B): DBIO[B] =
flatMap(a => DBIO(_ => f(a)))

def flatMap[B]l(f: A => DBIO[B]): DBIO[B] =
DBIO(s => f(run(s)).run(s))

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

® We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

o session = A ® And define this utility function: ask

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a))) object DBIO {

def ask: DBIO[Session] =

def flatMap[B]l(f: A => DBIO[B]): DBIO[B] = DBIO(s => s)

DBIO(s => f(run(s)).run(s))

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

® We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

o session = A ® And define this utility function: ask

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a))) object DBIO {

def ask: DBIO[Session] =

def flatMap[B]l(f: A => DBIO[B]): DBIO[B] = DBIO(s => s)

DBIO(s => f(run(s)).run(s))

® We can implement code that access to the database with DBIO

def greatDBOpsl: DBIO[?] =
DBIO.ask map { session: Session =>
session.execute(/x Great Operation! /)

b

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

® greatDBOps1, greatDBOps2 and greatDBOps3

run in the same transaction & val dbio: DBIO[Int] = for {
a <- greatDBOpsl
b <- greatDBOps2
c <- greatDBOps3(a, b)

} yield c

withTransaction { session =>
dbio.run(session)

s

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 9/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

® greatDBOps1, greatDBOps2 and greatDBOps3
run in the same transaction &

Is there well-known monad
which can do the same things?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

val dbio: DBIO[Int] = for {
a <- greatDBOpsl
b <- greatDBOps2
c <- greatDBOps3(a, b)

} yield ¢

withTransaction { session =>
dbio.run(session)

I

October 17, 2020 @ ScalaMatsuri 2020

9/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

® greatDBOps1, greatDBOps2 and greatDBOps3

run in the same transaction & val dbio: DBIO[Int] = for {
a <- greatDBOpsl

b <- greatDBOps2
Is there well-known monad ¢ <- greatDBOps3(a, b)

which can do the same things? } yield ¢

withTransaction { session =>
ﬁ dbio.run(session)
Nz

® Yes, DBIO[A] is the same as Reader[Session, A]

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

9/45

mailto:hikaru_yoshimura@r.recruit.co.jp

" Yoshimura Hikaru (hikaru_yoshimura@rrecruitcojp) ~ Aninterpreter handling over effects for Eff ~ October 17, 2020 @ ScalaMatsuri 2020 10/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Next step

® DBIO represents just a Database I/0O
® but we sometimes want to use other (side) effects...

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 10/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Next step

® DBIO represents just a Database I/0O
® but we sometimes want to use other (side) effects...

What are the other side effects?

o

-

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

10/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Next step

® DBIO represents just a Database I/0O
® but we sometimes want to use other (side) effects...
What are the other side effects?

o

-

® |t’s time to go to the next step:

(49

We want to send e-mails only if the database transaction is successful

bb

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 10/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 11/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email

® Sending e-mail is as popular as using database

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 11/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email

® Sending e-mail is as popular as using database

® Database has transactions but e-mail doesn’t

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 11/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email

® Sending e-mail is as popular as using database
® Database has transactions but e-mail doesn’t

® So we want to send e-mail after all operations are done successfully

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 11/45

mailto:hikaru_yoshimura@r.recruit.co.jp

" Yoshimura Hikaru (hikaru_yoshimura@rrecruitcojp) ~ Aninterpreter handling over effects for Eff ~ October 17, 2020 @ ScalaMatsuri 2020 12/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Naive approach

® There is a sending e-mail function that
has such an interface:

def sendMail(
mail: Mail
): Either[Throwable, Unit]

® Mail consists of to-address,
from-address, title and email body

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 12/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Naive approach

® There is a sending e-mail function that
has such an interface:

def sendMail(
mail: Mail
): Either[Throwable, Unit]

® Mail consists of to-address,
from-address, title and email body

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp)

An interpreter handling over effects for Eff

e And then we use this after the database
transaction

val result = withTransaction { session =>
dbio.run(session)

}

if (result.isRight)
sendMail(greatEmail) match {
case Left(e) => /x something x/
case _ = ()

b

October 17, 2020 @ ScalaMatsuri 2020 12/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Naive approach

® There is a sending e-mail function that
has such an interface:

def sendMail(
mail: Mail
): Either[Throwable, Unit]

® Mail consists of to-address,
from-address, title and email body

e And then we use this after the database
transaction

val result = withTransaction { session =>
dbio.run(session)

}

if (result.isRight)
sendMail(greatEmail) match {
case Left(e) => /x something x/
case _ = ()

b

The code distance between sendMail and DB operation is too far away

~
Gz

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp)

An interpreter handling over effects for Eff

October 17, 2020 @ ScalaMatsuri 2020 12/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 13/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion

® We implement the DB operating function that returns DBIO

def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =
DBIO.ask map { session =>
/+ Great user update logic is here!!!! 4/

I

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 13/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion

® We implement the DB operating function that returns DBIO

def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =
DBIO.ask map { session =>
/+ Great user update logic is here!!!! 4/

I

We want to write sending e-mail logic here too!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

13/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion

® We implement the DB operating function that returns DBIO

def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =
DBIO.ask map { session =>
/+ Great user update logic is here!!!! 4/

I

We want to write sending e-mail logic here too!

® But actually we can only write e-mail logic behind the withTransaction
® It means that our code is low cohesion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

13/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

OK. How about to return DBIO[Either [Throwable, Al1?

~”

i

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 14 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

OK. How about to return DBIO[Either [Throwable, Al1?

.
o~

def userUpdate(
newUserInfo: UserInfo
): DBIO[Either[Throwable, Unit]] =
DBIO.ask map { session =>
val result = /4 Great user update logic %/
val mail = /x Great e-mail from newUserInfo x/

if (result)
sendMail(greatEmail)
else
Left(/« error! x/)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 14 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

OK. How about to return DBIO[Either [Throwable, Al1?

.
o~

def userUpdate(
newUserInfo: UserInfo
): DBIO[Either[Throwable, Unit]] =
DBIO.ask map { session =>
val result = /4 Great user update logic %/ e |sit OK? g
val mail = /x Great e-mail from newUserInfo x/

if (result)
sendMail(greatEmail)
else
Left(/« error! x/)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 14 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

OK. How about to return DBIO[Either [Throwable, Al1?

~”

P

ez

def userUpdate(
newUserInfo: UserInfo
): DBIO[Either[Throwable, Unit]] =
DBIO.ask map { session =>
val result = /4 Great user update logic %/
val mail = /x Great e-mail from newUserInfo x/

if (result)
sendMail(greatEmail)
else
Left(/« error! x/)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp)

* [sit OK?=
® This code appears to have high
cohesion, unlike before

An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 14 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad transformer

We can use monad transformer such as EitherT

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 15/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad transformer

We can use monad transformer such as EitherT

-~

2

® Monad transformer takes a monadic type constructor and turns it into a monad

® Scala’s for only can access the most outer

def userUpdateT(
newUserInfo: UserInfo monad
): EitherTIDBIO, Throwable, Unit] = ® So if we use EitherT rather than Either, it
userUpdate(newUserInfo).toEitherT . X L.
will be easy to access Either monad inside
DBIO

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 15/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email failure example

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 16 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email failure example

® You maybe know, both DBIO[Either[Throwable, A]]l and
EitherT[DBIO, Throwable, A] have such a problem:

The e-mail in userUpdate will be sent
even if maybeFail fails

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

val dbio = for {
// With sending e-mail here
_ <— userUpdate(newUserInfo)
_ <- maybeFail // @& %=

} yield 7?7

withTransaction(dbio. run)

October 17, 2020 @ ScalaMatsuri 2020 16 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email failure example

® You maybe know, both DBIO[Either[Throwable, A]]l and
EitherT[DBIO, Throwable, A] have such a problem:

The e-mail in userUpdate will be sent val dbio = for {

even if maybeFail fails // With sending e-mail here
_ <— userUpdate(newUserInfo)
_ <- maybeFail // @& %=
} yield 7?7

withTransaction(dbio. run)

It’s no good that database I/O are rollbacked however e-mail has been sent!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 16 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

®* We want both cohesion and consistency

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

®* We want both cohesion and consistency

® Up to this point of my talk, there seems to be a trade-off between the two

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

®* We want both cohesion and consistency
® Up to this point of my talk, there seems to be a trade-off between the two
® In my opinion, there are two ways to combine them:

©® Make an original moand to do it

® Use Eff and implement its suitable interpreter for the trade-off

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

We want both cohesion and consistency

Up to this point of my talk, there seems to be a trade-off between the two

® In my opinion, there are two ways to combine them:

©® Make an original moand to do it

® Use Eff and implement its suitable interpreter for the trade-off
°

First, | will describe option @. Then | will present my opinion on which is the better
choice

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Table of contents

@ Eff and Interpreter

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 18/45

mailto:hikaru_yoshimura@r.recruit.co.jp

What is Eff*

*In this talk, Eff is based on atnos-eff.
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 19/45

https://github.com/atnos-org/eff
mailto:hikaru_yoshimura@r.recruit.co.jp

What is Eff*

® Eff is a type constructor which takes two types: R and A
Eff[R, Al

Effects stack Result type

N

Heap —— DBIO | Either | NoFx

N

BoTtTOoM

*In this talk, Eff is based on atnos-eff.
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

19/45

https://github.com/atnos-org/eff
mailto:hikaru_yoshimura@r.recruit.co.jp

What is Eff*

® Eff is a type constructor which takes two types: R and A

Eff[R, Al

/I

Effects stack

N

\

Result type

Heap —— DBIO

Either

NoFx

N

BoTtTOoM

® To simplify in this talk, effects stack is a type level stack like this
® In this figure, the effects stack has DBIO and Either

*In this talk, Eff is based on atnos-eff.

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

October 17, 2020 @ ScalaMatsuri 2020

19/45

https://github.com/atnos-org/eff
mailto:hikaru_yoshimura@r.recruit.co.jp

" Yoshimura Hikaru (hikaru_yoshimura@rrecruitcojp) ~ Aninterpreter handling over effects for Eff ~ October 17, 2020 @ ScalaMatsuri 2020 20/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

® We need interpreters to fire real effects

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 20/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

® We need interpreters to fire real effects
® When run an interpreter, it takes type(s) from R and execute real effects

Pop R
DBIO0 ¢—

| Either | NoFx |

o .

sl Firing

— for example, DB access
Interpreter

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

20/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

® We need interpreters to fire real effects
® When run an interpreter, it takes type(s) from R and execute real effects

Pop R
DBIO0 ¢—

| Either | NoFx |

o .

sl Firing

— for example, DB access
Interpreter

® |t means that types in R are just “symbols” so they don’t have the logic for real
effects
® Firing effect logics are given by interpreters

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

20/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Intuition for Eff and DI

® That’s similar to dependecy injection(Dl), | think &
DI Interface « Implementation
Eff Type in effects stack «— Interpreter

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

October 17, 2020 @ ScalaMatsuri 2020

21/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Intuition for Eff and DI

® That’s similar to dependecy injection(Dl), | think &
DI Interface « Implementation
Eff Type in effects stack «— Interpreter

® And then
Por R
DBIQ «—«—— :
How do we implement Either \ NoFx \
an interpreter?
.ﬂ: OT-» L.
6 P Firing
D — for example, DB access
Interpreter

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 21/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter’s interface (atnos-eff)

® This is interface of atons-eff Interpreter

trait Interpreter[M[_], R, A, B] {
def onPure(a: A): Eff[R, Bl

def onApplicativeEffect[X, T[_] : Traversel(
xs: TIM[X]1, continuation: Continuation[R, T[X], Bl
): EffIR, B]
+

def onEffect[X](x: MI[X], continuation: Continuation[R, X, Bl):

Eff[R, Bl

def onLastEffect[X](x: M[X], continuation: Continuation[R, X, Unit]): Eff[R, Unit]

® https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/

org/atnos/eff/Interpret.scala

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

October 17, 2020 @ ScalaMatsuri 2020

22/45

https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/org/atnos/eff/Interpret.scala
https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/org/atnos/eff/Interpret.scala
mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter’s interface (atnos-eff)

® This is interface of atons-eff Interpreter

trait Interpreter[M[_], R, A, B] {
def onPure(a: A): Eff[R, Bl

def onEffect[X](x: MI[X], continuation: Continuation[R, X, Bl): Eff[R, BI]
def onLastEffect[X](x: M[X], continuation: Continuation[R, X, Unit]): Eff[R, Unit]
def onApplicativeEffect[X, T[_] : Traversel(

xs: TIM[X]1, continuation: Continuation[R, T[X], Bl

): EffIR, B]
}

® https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/
org/atnos/eff/Interpret.scala

What does it mean?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 22/45

https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/org/atnos/eff/Interpret.scala
https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/org/atnos/eff/Interpret.scala
mailto:hikaru_yoshimura@r.recruit.co.jp

" Yoshimura Hikaru (hikaru_yoshimura@rrecruitcojp) ~ Aninterpreter handling over effects for Eff ~ October 17, 2020 @ ScalaMatsuri 2020 ~ 23/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

® We think that we run an interpreter for DBIO, to R that is DBIO ‘ Either ‘ NoFx ‘of
Eff[R, Al

U

Pop
DBIQ ¢——m

Either | NoFx |

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 23/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

® We think that we run an interpreter for DBIO, to R that is DBIO ‘ Either ‘ NoFx ‘of
Eff[R, Al

U

Pop
DBIQ ¢——m

Either | NoFx |

® An interpreter provides two values for us:
© DBIO[X]
® continuation: X => Eff[U, B]
to implement the monad instace for the effect
® So we define map and flatMap from the two parts

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 23/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

® We think that we run an interpreter for DBIO, to R that is DBIO ‘ Either ‘ NoFx ‘of
Eff[R, Al

U

Pop
DBIQ ¢——m

Either | NoFx |

® An interpreter provides two values for us:
© DBIO[X]
® continuation: X => Eff[U, B]
to implement the monad instace for the effect
® So we define map and flatMap from the two parts

What is continuation?

k)

-

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 23/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Notation

® First, we introduce a new notation to R before explain
® Assuming that R: _dbio: _either, it meansRis DBIO | Either ‘ NoFx ‘

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 24/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Continuation for interpreter

® There are some DBIO operations in the Eff [R: _dbio: _either, Al

.y
fo

Interpreter for DBIO

.‘;—l
Eff[R: _dbio: _either, A] ———— Interpreter for DBIO
N
¢ .
Eff[R: _either, DBIO[A]] ¢— /\
Continuation

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

25/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Continuation for interpreter

® There are some DBIO operations in the Eff [R: _dbio: _either, Al

.y
fo

Interpreter for DBIO

.‘;-l
Eff[R: _dbio: _either, A] ———— Interpreter for DBIO
5 -
¢ .
Eff[R: _either, DBIO[A]] ¢— /\

Continuation

® First interpreter can access the continuation as a function, which processes effect
recursivily

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 25/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Extract types by interpreter

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 26/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Extract types by interpreter

® Some types in the effects stack R can be extracted by one interpreter

P
DBIO[Either] = [NoFx |

—

0)

[D

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 26/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Extract types by interpreter

® Some types in the effects stack R can be extracted by one interpreter

P
DBIO[Either] = [NoFx |

—

0)

[N

® On the other hand, it’s good () that an interpreter doesn’t extract just any types
from the effects stack

Void DBIO | Either | NoFx |

But | will do something...

o

0)
.l

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 26/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Table of contents

0 Interpreter Handling over Effects

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 27/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Revisit the problem

® We want to take the both cohesion and consistency between the database
transaction and sending e-mails

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 28/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Revisit the problem

® We want to take the both cohesion and consistency between the database
transaction and sending e-mails
® “Over effects” means that
® There are two effects: the database 1/0 and sending e-mails
® |f database I/O with trasaction would fail, sending e-mails must not be done

® What an effect should be run depends on that the other effect would be done
successfully or not

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

28 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Create a type constructor

® First we make a type constructor for e-mail

sealed trait MailAction[A] This is just like Writer monad, isn’t it?
case class Tell(

mail: Mail -
) extends MailAction[Unit] v

® And we define DBIOAction too

sealed trait DBIOAction[A]
case class Ask() extends DBIOAction[Session]
case class Execute[A](
value: A
) extends DBIOAction[Al ?C1

It’s like Reader moand, the same as DBIO

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 29/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Utilty functions

® Then we create utilty functions:
© First one sendMailEff is for making Eff [R: _mail, Unit]

def sendMailEff[R: _maill(
mail: Mail
): Eff[R, Unit] = Eff.send[MailAction, R, Unit](Tell(mail))

® Second one fromDBIO is used to convert DBIO[A] into Eff[R: _dbio, Al

def fromDBIO[R: _dbio, AI(
dbio: DBIO[A]
): Eff[R, Al =
for {
session <- Eff.send[DBIOAction, R, Session](Ask())
a <- Eff.send[DBIOAction, R, A](Execute(dbio.run(session)))
} yield a

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

30/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Type parameters in interpreter

® We have already seen, Interpreter (page 22) has such a type parametrs:

’trait Interpreter[M[_], R, A, Bl

which mean that

Extracted
effects stack Result type

Vo

Interpreter[M[_], R, A, B]

/ /

Type constructor Inputed Eff
to be extracted result type

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

October 17, 2020 @ ScalaMatsuri 2020

31/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Type parameters in interpreter

® We have already seen, Interpreter (page 22) has such a type parametrs:

’trait Interpreter[M[_], R, A, Bl

which mean that

Extracted
effects stack Result type
\, j It’s very complicated =
Interpreter[M[_], R, A, B] | want to see examples!

| ¢

Type constructor Inputed Eff
to be extracted result type

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 31/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Example

Eff[R: _dbio: _mail, A]

l

—

.. o)

[9
|28 wog vl
Interpreter [DBIOAction, U, A, Either[Throwable, A]]

|

Eff[R: _mail, Either[Throwable, All

e Note that R: _mail means MailAction is contained in the effects stack R

® AndUis Mail . We can calculate U from R and DBIOAction by

Member.Aux [DBIOAction, R, U]

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

32/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter

® It’s time to implement the interpreter over effects!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter

® It’s time to implement the interpreter over effects!
® We’ll make DBIOAction interpreter at first

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter

® It’s time to implement the interpreter over effects!
® We’ll make DBIOAction interpreter at first
® |t means that we implement
Interpreter [DBIOAction, U, A, Either[Throwable, Al] for
Eff[R: _dbio, Al
® Uis the rest of DBIOAction extracted from R

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter

® It’s time to implement the interpreter over effects!
® We’ll make DBIOAction interpreter at first
It means that we implement
Interpreter [DBIOAction, U, A, Either[Throwable, Al] for
Eff [R: _dbio, Al
® Uis the rest of DBIOAction extracted from R
® Finally runDBIO has this interface:

def runDBIO[R: _dbio, Al(
eff: Eff[R, Al
) (implicit m: Member.Aux[DBIOAction, R, NoFx]): Either[Throwable, Al =
withTransaction { session =>
Eff.run(
Interpret.runInterpreter(eff)(new Interpreter[DBIOAction, NoFx, A, Either[Throwable, Al]l {
/% We implement now! x/
13
)
+

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

33/45

mailto:hikaru_yoshimura@r.recruit.co.jp

1st: onPure

® Following Interpreter interface in page 22, we make onPure at first

def onPure(a: A): Eff[NoFx, Either[Throwable, Al]l =
Eff.pure(Right(a))

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 34/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

1st: onPure

® Following Interpreter interface in page 22, we make onPure at first

def onPure(a: A): Eff[NoFx, Either[Throwable, Al]l =
Eff.pure(Right(a))

® |t’s very easy

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 34/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

2nd: onEffect

® Next we implement onEffect

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 35/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

2nd: onEffect

® Next we implement onEffect

def onEffect[X](
x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, Al]
): Eff[NoFx, Either[Throwable, Al] =
x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

® Continuation[U, X, Either[Throwable, Al] reperesents a function whose
interface is X => Eff[U, Either[Throwable, All]

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 35/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

2nd: onEffect

® Next we implement onEffect

def onEffect[X](
x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, Al]
): Eff[NoFx, Either[Throwable, Al] =
x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

® Continuation[U, X, Either[Throwable, Al] reperesents a function whose
interface is X => Eff[U, Either[Throwable, All]

® First we have to use the pattern matching for x to determine what X is

Ask case Xis Session, and continuation is needed that value
Execute case we don’t know what X is, but Execute has X value

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

35/45

mailto:hikaru_yoshimura@r.recruit.co.jp

2nd: onEffect

® Next we implement onEffect

def onEffect[X](
x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, Al]

): Eff[NoFx, Either[Throwable, Al] =
x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

® Continuation[U, X, Either[Throwable, Al] reperesents a function whose
interface is X => Eff[U, Either[Throwable, All]

® First we have to use the pattern matching for x to determine what X is

Ask case Xis Session, and continuation is needed that value
Execute case we don’t know what X is, but Execute has X value

® We can access session because the interpreter is in withTransaction (page 33)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

35/45

mailto:hikaru_yoshimura@r.recruit.co.jp

3rd: onLastEffect and onApplicativeEffect

® These are just type puzzle

x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

def onApplicativeEffect[X, T[_]: Traverse](
xs: T[DBIOAction[X]], continuation: Continuation[NoFx, T[X], Either[Throwable, All
): Eff[NoFx, Either[Throwable, All =
continuation.apply(
xs.map {
case Ask() => session
case Execute(v) => v
}
)

def onLastEffect[X](x: DBIOAction[X], continuation: Continuation[NoFx, X, Unitl): Eff[NoFx, Unit] =

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

36 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

3rd: onLastEffect and onApplicativeEffect

® These are just type puzzle

def onLastEffect[X](x: DBIOAction[X], continuation: Continuation[NoFx, X, Unitl): Eff[NoFx, Unit] =
x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

def onApplicativeEffect[X, T[_]: Traverse](
xs: T[DBIOAction[X]], continuation: Continuation[NoFx, T[X], Either[Throwable, All
): Eff[NoFx, Either[Throwable, All =
continuation.apply(
xs.map {
case Ask() => session
case Execute(v) => v
}
)

® | know that it’s very diffcult for us but applicative interpreter is not the scope in this
talk so we’ll skip

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 36 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 37/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

® We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 37/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

® We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction

® The interface is Interpreter[MailAction, U, A, (List[Maill, A)] for
Eff[R: _mail, Al

What is (List[Mail], A)?

.
e

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 37/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

® We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction

® The interface is Interpreter[MailAction, U, A, (List[Maill, A)] for
Eff[R: _mail, Al

What is (List[Mail], A)?

o
&
® We try to

© collect e-mails by a new interpreter we’ll create from now
@ execute runDBIO then if the result is successful run sendMail with @’s e-mails.
However if the result is failure sendMail is not call and @’s e-mails will not be sent

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 37/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

® So sendMailAfterDBIO’s interface:

def runMailAfterDBIO[R: _mail: _dbio, U, Al(

eff: Eff[R, Al
) (

implicit ml: Member.Aux[MailAction, R, U], m2: Member.Aux[DBIOAction, U, NoFx]
): Either[Throwable, A] = {

val mailRemoved: Eff[U, (List[Maill, A)] =

Interpret.runInterpreter(eff)(new Interpreter[MailAction, U, A, (List[Maill, A)] {
/% We implement now! x/

o]

runDBIO(mailRemoved).flatMap {
case (mails, a) =>
mails.traverse(sendMail).map(_ => a)

® Note that sendMail is defined on 12 page

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

38/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

® This is it!

trait Interpreter[MailAction, U, A, (List[Maill, A)] {
def onPure(a: A): Eff[U, (List[Maill, A)] =
Eff.pure((Nil, a))

def onEffect[X](
x: MailAction[X], continuation: Continuation[U, X, (List[Maill, A)I
): Eff[U, (List[Maill, A)] =
x match {
case Tell(mail) =>
// "Tell extends MailAction[Unit]® so in this case X' is “Unit"
continuation(()).map {
case (mails, a) => (mail :: mails, a)

}

® onLastEffect and onApplicativeEffect are omited from the slide '©

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 39/ 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Usage

® We can use this like below:

def userUpdateEff[R: _dbio: _maill(
newUserInfo: UserInfo
): Eff[R, Unit] =
for {
_ <- fromDBIO(userUpdate(newUserInfo))
_ <- sendMailEff(Mail(/x very great email from “newUserInfo x/))
} yield ()

val user: UserInfo = 77?7

runMailAfterDBIO(userUpdateEff(user)) match {
case Right(_) => /x Succecss DB and e-mail! 4/
case Left(_) => /x Failure %/

+

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 40 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Usage

® We can use this like below:

def userUpdateEff[R: _dbio: _maill(
newUserInfo: UserInfo
): Eff[R, Unit] =
for {
_ <- fromDBIO(userUpdate(newUserInfo))
_ <- sendMailEff(Mail(/x very great email from “newUserInfo x/))
} yield ()

val user: UserInfo = 77?7

runMailAfterDBIO(userUpdateEff(user)) match {
case Right(_) => /x Succecss DB and e-mail! 4/
case Left(_) => /x Failure %/

+

® It looks good, doesn’t it? =

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 40 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

"but I cannot explain this due to the time limit of this talk ‘=
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

o
i

"but | cannot explain this due to the time limit of this talk =
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

o
&

® That’s correct, but
L . T . : - »
® in this example only covers a case in which, “if the transaction fails no e-mail is sent
® other cases could exist; for example, maybe we would like to send error e-mails when
the transaction fails

"but I cannot explain this due to the time limit of this talk ‘=
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

o
e

® That’s correct, but

® in this example only covers a case in which, “if the transaction fails no e-mail is sent”
® other cases could exist; for example, maybe we would like to send error e-mails when
the transaction fails

® If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails

"but I cannot explain this due to the time limit of this talk ‘=
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

o
@

® That’s correct, but

® in this example only covers a case in which, “if the transaction fails no e-mail is sent”
® other cases could exist; for example, maybe we would like to send error e-mails when
the transaction fails

® If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails

* Eff can do that without changing any interfaces, we only change the interperter.”

"but I cannot explain this due to the time limit of this talk ‘=
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

® Or, we can call sendMail outside of monads

val dbioMail: Writer[List[Mail], DBIO[?]] = ?7?

val (mails, dbio) = dbioMail.run // “Writer' run
withTransaction(dbio.run) match {
case Right(_) => List.traverse(mails) (sendMail)
case Left(_) => // error!

b

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 42/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

® Or, we can call sendMail outside of monads

val dbioMail: Writer[List[Mail], DBIO[?]] = ?7?

val (mails, dbio) = dbioMail.run // “Writer' run
withTransaction(dbio.run) match {
case Right(_) => List.traverse(mails) (sendMail)
case Left(_) => // error!

b

® Indeed it can be done but it’s outside of monad, so it’s maybe not succesful to
reprensenting effects by monad &

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 42/45

mailto:hikaru_yoshimura@r.recruit.co.jp

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

® In this talk, we see that some ways to database 1/O and sending e-mails

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

® In this talk, we see that some ways to database 1/O and sending e-mails

® Monad types are embedded its concrete operation for the effect but Eff is not. Types
are just symbols and the concrete operation is given by the interpreter

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

® In this talk, we see that some ways to database 1/O and sending e-mails

® Monad types are embedded its concrete operation for the effect but Eff is not. Types
are just symbols and the concrete operation is given by the interpreter

® Therefore an interpreter can do the complex operation which is over some effects

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43/45

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

In this talk, we see that some ways to database 1/0 and sending e-mails

Monad types are embedded its concrete operation for the effect but Eff is not. Types
are just symbols and the concrete operation is given by the interpreter

Therefore an interpreter can do the complex operation which is over some effects

Let’s use Eff!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43/45

mailto:hikaru_yoshimura@r.recruit.co.jp

References

[1] Oleg Kiselyov and Hiromi Ishii.
Freer monads, more extensible effects.

https://www.slideshare.net/konn/freer-monads-more-extensible-effects-59411772,
2016.

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 44 /45

mailto:hikaru_yoshimura@r.recruit.co.jp

Thank you for your attention!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 45/45

mailto:hikaru_yoshimura@r.recruit.co.jp

	Who am I?
	Introduction
	Low Level Example
	Monad and Monad Transformer
	Eff and Interpreter
	Interpreter Handling over Effects
	Conclusion
	References

