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Who am I?

Recruit Marketing Partners Co., Ltd.
® StudySapuri ENGLISH server side(Scala)

Quantum Information

® but | don’t know well about Quantum annealing...

® Cryptography & Security

KIEX typesetting
Twitter @_yyu_

Qiita yyu

GitHub y-yu
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Concrete case I'll talk about
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Concrete case I'll talk about

In this talk, we think about one concrete case:

M
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Concrete case I'll talk about

In this talk, we think about one concrete case:

M

&

44
Read & Write data to database with the transaction

3

® This is very common case in the programming, but there are many ways to do it
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Low level example
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Low level example

val transactionManager = new TM()
val session = transactionManager.begin()

databaseOperation(
// If you want to rollback,
// call “session.fail®
session

if (transactionManager.commit(session))
/% Successful x/

else
/x Failure x/
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Low level example

val transactionManager = new TM()
val session = transactionManager.begin()

databaseOperation(

// If you want to rollback, . .

// call “session.fail’ ® It’s (maybe) used in tranditional
) sesen languages like C

if (transactionManager.commit(session))
/% Successful x/

else
/x Failure x/
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Low level example

val transactionManager = new TM()
val session = transactionManager.begin()

databaseOperation(
// If you want to rollback,
// call “session.fail®
session

)

if (transactionManager.commit(session))
/% Successful x/

else
/x Failure x/

® It’s (maybe) used in tranditional
languages like C

® You know, that way has some problems:
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Low level example

val transactionManager = new TM()
val session = transactionManager.begin()

databaseOperation(
// If you want to rollback,
// call “session.fail®
session

)

if (transactionManager.commit(session))
/% Successful x/

else
/x Failure x/

® It’s (maybe) used in tranditional
languages like C

® You know, that way has some problems:

Could programmers forget to write begin and commit?

X))

-
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Loan pattern

® If the problem is forgetting, we can use Loan pattern:

def withTransaction(
f: Session => A
): Either[Throwable, A] = {
val session = transactionManager.begin()
val a = f(session)
if (transactionManager.commit(session)) Right(a)
else Left(new RuntimeException())

withTransaction { session =>
something.databaseOperation(session)

}
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Loan pattern

® If the problem is forgetting, we can use Loan pattern:

def withTransaction( e withTransaction takes a function f
f: Session => A

): Either[Throwable, Al = {
val session = transactionManager.begin()
val a = f(session)
if (transactionManager.commit(session)) Right(a)
else Left(new RuntimeException())

H

withTransaction { session =>
something.databaseOperation(session)

}
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Loan pattern

® If the problem is forgetting, we can use Loan pattern:

def withTransaction( e withTransaction takes a function f
f: Session => A
): Either[Throwable, Al = { ® And then execute it inside the begin
val session = transactionManager.begin() .
and commit

val a = f(session)
if (transactionManager.commit(session)) Right(a)
else Left(new RuntimeException())

}

withTransaction { session =>
something.databaseOperation(session)

}
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Loan pattern

® If the problem is forgetting, we can use Loan pattern:

def withTransaction( e withTransaction takes a function f
f: Session => A
): Either[Throwable, Al = { ® And then execute it inside the begin
val session = transactionManager.begin() .
and commit

val a = f(session)
if (transactionManager.commit(session)) Right(a)
else Left(new RuntimeException()) Is Loan pattern the silver bullet?

Ay

withTransaction { session => a0
something.databaseOperation(session) =

}

}
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Nested loan pattern
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Nested loan pattern

® We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =

withTransaction { session => Use withTransaction in
something.databaseOperation(session) . .
} the other withTransaction &=

withTransaction { session =>
/% something using session x/
ops()

}
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Nested loan pattern

® We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =

withTransaction { session => Use withTransaction in

something.databaseOperation(session) . .
} the other withTransaction &

withTransaction { session =>
/% something using session x/
ops()

}

® No one wants to do that but it’s allowed... &
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Nested loan pattern

® We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =
withTransaction { session => Use withTransaction in
something.databaseOperation(session) . .
} the other withTransaction &

withTransaction { session =>
/% something using session x/
ops()

}

® No one wants to do that but it’s allowed... =
® Indeed, we don’t actually “forget” to write begin and commit, but the other problem

remains
® |n addtion, the first low level example also has this problem
October 17, 2020 @ ScalaMatsuri 2020 7/45
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Monad

® We can use map and flatMap instead of raw Loan pattern
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Monad

® We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](
run: Session => A
) {
def map[B](f: A => B): DBIO[B] =
flatMap(a => DBIO(_ => f(a)))

def flatMap[B]l(f: A => DBIO[B]): DBIO[B] =
DBIO(s => f(run(s)).run(s))

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8/45


mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

® We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

o session = A ® And define this utility function: ask

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a))) object DBIO {

def ask: DBIO[Session] =

def flatMap[B]l(f: A => DBIO[B]): DBIO[B] = DBIO(s => s)

DBIO(s => f(run(s)).run(s))
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Monad

® We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

o session = A ® And define this utility function: ask

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a))) object DBIO {

def ask: DBIO[Session] =

def flatMap[B]l(f: A => DBIO[B]): DBIO[B] = DBIO(s => s)

DBIO(s => f(run(s)).run(s))

® We can implement code that access to the database with DBIO

def greatDBOpsl: DBIO[?] =
DBIO.ask map { session: Session =>
session.execute(/x Great Operation! /)

b
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Monad

® greatDBOps1, greatDBOps2 and greatDBOps3

run in the same transaction & val dbio: DBIO[Int] = for {
a <- greatDBOpsl
b <- greatDBOps2
c <- greatDBOps3(a, b)

} yield c

withTransaction { session =>
dbio.run(session)

s
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Monad

® greatDBOps1, greatDBOps2 and greatDBOps3
run in the same transaction &

Is there well-known monad
which can do the same things?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

val dbio: DBIO[Int] = for {
a <- greatDBOpsl
b <- greatDBOps2
c <- greatDBOps3(a, b)

} yield ¢

withTransaction { session =>
dbio.run(session)

I
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Monad

® greatDBOps1, greatDBOps2 and greatDBOps3

run in the same transaction & val dbio: DBIO[Int] = for {
a <- greatDBOpsl

b <- greatDBOps2
Is there well-known monad ¢ <- greatDBOps3(a, b)

which can do the same things? } yield ¢

withTransaction { session =>
ﬁ dbio.run(session)
Nz

® Yes, DBIO[A] is the same as Reader[Session, A]
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Next step

® DBIO represents just a Database I/0O
® but we sometimes want to use other (side) effects...
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Next step

® DBIO represents just a Database I/0O
® but we sometimes want to use other (side) effects...

What are the other side effects?

o

-
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Next step

® DBIO represents just a Database I/0O
® but we sometimes want to use other (side) effects...
What are the other side effects?

o

-

® |t’s time to go to the next step:

(49

We want to send e-mails only if the database transaction is successful

bb
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Email
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Email

® Sending e-mail is as popular as using database
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Email

® Sending e-mail is as popular as using database

® Database has transactions but e-mail doesn’t
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Email

® Sending e-mail is as popular as using database
® Database has transactions but e-mail doesn’t

® So we want to send e-mail after all operations are done successfully
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Naive approach

® There is a sending e-mail function that
has such an interface:

def sendMail(
mail: Mail
): Either[Throwable, Unit]

® Mail consists of to-address,
from-address, title and email body
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Naive approach

® There is a sending e-mail function that
has such an interface:

def sendMail(
mail: Mail
): Either[Throwable, Unit]

® Mail consists of to-address,
from-address, title and email body
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e And then we use this after the database
transaction

val result = withTransaction { session =>
dbio.run(session)

}

if (result.isRight)
sendMail(greatEmail) match {
case Left(e) => /x something x/
case _ = ()

b
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Naive approach

® There is a sending e-mail function that
has such an interface:

def sendMail(
mail: Mail
): Either[Throwable, Unit]

® Mail consists of to-address,
from-address, title and email body

e And then we use this after the database
transaction

val result = withTransaction { session =>
dbio.run(session)

}

if (result.isRight)
sendMail(greatEmail) match {
case Left(e) => /x something x/
case _ = ()

b

The code distance between sendMail and DB operation is too far away

~
Gz

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp)

An interpreter handling over effects for Eff

October 17, 2020 @ ScalaMatsuri 2020 12/ 45


mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion
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Cohesion

What is the code distance? It’s known as cohesion

® We implement the DB operating function that returns DBIO

def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =
DBIO.ask map { session =>
/+ Great user update logic is here!!!! 4/

I
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Cohesion

What is the code distance? It’s known as cohesion

® We implement the DB operating function that returns DBIO

def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =
DBIO.ask map { session =>
/+ Great user update logic is here!!!! 4/

I

We want to write sending e-mail logic here too!
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Cohesion

What is the code distance? It’s known as cohesion

® We implement the DB operating function that returns DBIO

def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =
DBIO.ask map { session =>
/+ Great user update logic is here!!!! 4/

I

We want to write sending e-mail logic here too!

® But actually we can only write e-mail logic behind the withTransaction
® It means that our code is low cohesion
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Cohesion

OK. How about to return DBIO[Either [Throwable, Al1?

~”

i
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Cohesion

OK. How about to return DBIO[Either [Throwable, Al1?

.
o~

def userUpdate(
newUserInfo: UserInfo
): DBIO[Either[Throwable, Unit]] =
DBIO.ask map { session =>
val result = /4 Great user update logic %/
val mail = /x Great e-mail from newUserInfo x/

if (result)
sendMail(greatEmail)
else
Left(/« error! x/)
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Cohesion

OK. How about to return DBIO[Either [Throwable, Al1?

.
o~

def userUpdate(
newUserInfo: UserInfo
): DBIO[Either[Throwable, Unit]] =
DBIO.ask map { session =>
val result = /4 Great user update logic %/ e |sit OK? g
val mail = /x Great e-mail from newUserInfo x/

if (result)
sendMail(greatEmail)
else
Left(/« error! x/)
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Cohesion

OK. How about to return DBIO[Either [Throwable, Al1?

~”

P

ez

def userUpdate(
newUserInfo: UserInfo
): DBIO[Either[Throwable, Unit]] =
DBIO.ask map { session =>
val result = /4 Great user update logic %/
val mail = /x Great e-mail from newUserInfo x/

if (result)
sendMail(greatEmail)
else
Left(/« error! x/)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp)

* [sit OK?=
® This code appears to have high
cohesion, unlike before
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Monad transformer

We can use monad transformer such as EitherT
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Monad transformer

We can use monad transformer such as EitherT

-~

2

® Monad transformer takes a monadic type constructor and turns it into a monad

® Scala’s for only can access the most outer

def userUpdateT(
newUserInfo: UserInfo monad
): EitherTIDBIO, Throwable, Unit] = ® So if we use EitherT rather than Either, it
userUpdate(newUserInfo).toEitherT . X L.
will be easy to access Either monad inside
DBIO
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Email failure example
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Email failure example

® You maybe know, both DBIO[Either[Throwable, A]]l and
EitherT[DBIO, Throwable, A] have such a problem:

The e-mail in userUpdate will be sent
even if maybeFail fails

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff

val dbio = for {
// With sending e-mail here
_ <— userUpdate(newUserInfo)
_ <- maybeFail // @& %=

} yield 7?7

withTransaction(dbio. run)
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Email failure example

® You maybe know, both DBIO[Either[Throwable, A]]l and
EitherT[DBIO, Throwable, A] have such a problem:

The e-mail in userUpdate will be sent val dbio = for {

even if maybeFail fails // With sending e-mail here
_ <— userUpdate(newUserInfo)
_ <- maybeFail // @& %=
} yield 7?7

withTransaction(dbio. run)

It’s no good that database I/O are rollbacked however e-mail has been sent!
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Summary up to this point
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Summary up to this point

®* We want both cohesion and consistency
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Summary up to this point

®* We want both cohesion and consistency
® Up to this point of my talk, there seems to be a trade-off between the two
® In my opinion, there are two ways to combine them:

©® Make an original moand to do it

® Use Eff and implement its suitable interpreter for the trade-off
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Summary up to this point

We want both cohesion and consistency

Up to this point of my talk, there seems to be a trade-off between the two

® In my opinion, there are two ways to combine them:

©® Make an original moand to do it

® Use Eff and implement its suitable interpreter for the trade-off
°

First, | will describe option @. Then | will present my opinion on which is the better
choice
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What is Eff*

*In this talk, Eff is based on atnos-eff.
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What is Eff*

® Eff is a type constructor which takes two types: R and A
Eff[R, Al

Effects stack Result type

N

Heap —— DBIO | Either | NoFx

N

BoTtTOoM

*In this talk, Eff is based on atnos-eff.
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What is Eff*

® Eff is a type constructor which takes two types: R and A

Eff[R, Al

/I

Effects stack

N

\

Result type

Heap —— DBIO

Either

NoFx

N

BoTtTOoM

® To simplify in this talk, effects stack is a type level stack like this
® In this figure, the effects stack has DBIO and Either

*In this talk, Eff is based on atnos-eff.
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Interpreter

® We need interpreters to fire real effects
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Interpreter

® We need interpreters to fire real effects
® When run an interpreter, it takes type(s) from R and execute real effects

Pop R
DBIO0 ¢—

| Either | NoFx |

o .

sl Firing

— for example, DB access
Interpreter
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Interpreter

® We need interpreters to fire real effects
® When run an interpreter, it takes type(s) from R and execute real effects

Pop R
DBIO0 ¢—

| Either | NoFx |

o .

sl Firing

— for example, DB access
Interpreter

® |t means that types in R are just “symbols” so they don’t have the logic for real
effects
® Firing effect logics are given by interpreters
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Intuition for Eff and DI

® That’s similar to dependecy injection(Dl), | think &
DI Interface « Implementation
Eff Type in effects stack «— Interpreter
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Intuition for Eff and DI

® That’s similar to dependecy injection(Dl), | think &
DI Interface « Implementation
Eff Type in effects stack «— Interpreter

® And then
Por R
DBIQ «—«—— :
How do we implement Either \ NoFx \
an interpreter?
.ﬂ: OT-» L.
6 P Firing
D — for example, DB access
Interpreter
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Interpreter’s interface (atnos-eff)

® This is interface of atons-eff Interpreter

trait Interpreter[M[_], R, A, B] {
def onPure(a: A): Eff[R, Bl

def onApplicativeEffect[X, T[_] : Traversel(
xs: TIM[X]1, continuation: Continuation[R, T[X], Bl
): EffIR, B]
+

def onEffect[X](x: MI[X], continuation: Continuation[R, X, Bl):

Eff[R, Bl

def onLastEffect[X](x: M[X], continuation: Continuation[R, X, Unit]): Eff[R, Unit]

® https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/

org/atnos/eff/Interpret.scala
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Interpreter’s interface (atnos-eff)

® This is interface of atons-eff Interpreter

trait Interpreter[M[_], R, A, B] {
def onPure(a: A): Eff[R, Bl

def onEffect[X](x: MI[X], continuation: Continuation[R, X, Bl): Eff[R, BI]
def onLastEffect[X](x: M[X], continuation: Continuation[R, X, Unit]): Eff[R, Unit]
def onApplicativeEffect[X, T[_] : Traversel(

xs: TIM[X]1, continuation: Continuation[R, T[X], Bl

): EffIR, B]
}

® https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/
org/atnos/eff/Interpret.scala

What does it mean?
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Interpreter

® We think that we run an interpreter for DBIO, to R that is DBIO ‘ Either ‘ NoFx ‘of
Eff[R, Al

U

Pop
DBIQ ¢——m

Either | NoFx |
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Interpreter

® We think that we run an interpreter for DBIO, to R that is DBIO ‘ Either ‘ NoFx ‘of
Eff[R, Al

U

Pop
DBIQ ¢——m

Either | NoFx |

® An interpreter provides two values for us:
© DBIO[X]
® continuation: X => Eff[U, B]
to implement the monad instace for the effect
® So we define map and flatMap from the two parts
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Interpreter

® We think that we run an interpreter for DBIO, to R that is DBIO ‘ Either ‘ NoFx ‘of
Eff[R, Al

U

Pop
DBIQ ¢——m

Either | NoFx |

® An interpreter provides two values for us:
© DBIO[X]
® continuation: X => Eff[U, B]
to implement the monad instace for the effect
® So we define map and flatMap from the two parts

What is continuation?

k)

-
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Notation

® First, we introduce a new notation to R before explain
® Assuming that R: _dbio: _either, it meansRis DBIO | Either ‘ NoFx ‘
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Continuation for interpreter

® There are some DBIO operations in the Eff [R: _dbio: _either, Al

.y
fo

Interpreter for DBIO

.‘;—l
Eff[R: _dbio: _either, A] ———— Interpreter for DBIO
N
¢ .
Eff[R: _either, DBIO[A]] ¢— /\
Continuation
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Continuation for interpreter

® There are some DBIO operations in the Eff [R: _dbio: _either, Al

.y
fo

Interpreter for DBIO

.‘;-l
Eff[R: _dbio: _either, A] ———— Interpreter for DBIO
5 -
¢ .
Eff[R: _either, DBIO[A]] ¢— /\

Continuation

® First interpreter can access the continuation as a function, which processes effect
recursivily
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Extract types by interpreter
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Extract types by interpreter

® Some types in the effects stack R can be extracted by one interpreter

P
DBIO[Either] = [ NoFx |

—

0 )

[ D
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Extract types by interpreter

® Some types in the effects stack R can be extracted by one interpreter

P
DBIO[Either] = [ NoFx |

—

0 )

[ N

® On the other hand, it’s good () that an interpreter doesn’t extract just any types
from the effects stack

Void DBIO | Either | NoFx |

But | will do something...

o

0 )
.l
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Revisit the problem

® We want to take the both cohesion and consistency between the database
transaction and sending e-mails
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Revisit the problem

® We want to take the both cohesion and consistency between the database
transaction and sending e-mails
® “Over effects” means that
® There are two effects: the database 1/0 and sending e-mails
® |f database I/O with trasaction would fail, sending e-mails must not be done

® What an effect should be run depends on that the other effect would be done
successfully or not
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Create a type constructor

® First we make a type constructor for e-mail

sealed trait MailAction[A] This is just like Writer monad, isn’t it?
case class Tell(

mail: Mail -
) extends MailAction[Unit] v

® And we define DBIOAction too

sealed trait DBIOAction[A]
case class Ask() extends DBIOAction[Session]
case class Execute[A](
value: A
) extends DBIOAction[Al ?C1

It’s like Reader moand, the same as DBIO
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Utilty functions

® Then we create utilty functions:
© First one sendMailEff is for making Eff [R: _mail, Unit]

def sendMailEff[R: _maill(
mail: Mail
): Eff[R, Unit] = Eff.send[MailAction, R, Unit](Tell(mail))

® Second one fromDBIO is used to convert DBIO[A] into Eff[R: _dbio, Al

def fromDBIO[R: _dbio, AI(
dbio: DBIO[A]
): Eff[R, Al =
for {
session <- Eff.send[DBIOAction, R, Session](Ask())
a <- Eff.send[DBIOAction, R, A](Execute(dbio.run(session)))
} yield a

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020

30/45



mailto:hikaru_yoshimura@r.recruit.co.jp

Type parameters in interpreter

® We have already seen, Interpreter (page 22) has such a type parametrs:

’trait Interpreter[M[_], R, A, Bl

which mean that

Extracted
effects stack  Result type

Vo

Interpreter[M[_], R, A, B]

/ /

Type constructor Inputed Eff
to be extracted result type
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Type parameters in interpreter

® We have already seen, Interpreter (page 22) has such a type parametrs:

’trait Interpreter[M[_], R, A, Bl

which mean that

Extracted
effects stack  Result type
\, j It’s very complicated =
Interpreter[M[_], R, A, B] | want to see examples!

| ¢

Type constructor Inputed Eff
to be extracted result type
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Example

Eff[R: _dbio: _mail, A]

l

—

.. o)

[ 9
|28 wog vl
Interpreter [DBIOAction, U, A, Either[Throwable, A]]

|

Eff[R: _mail, Either[Throwable, All

e Note that R: _mail means MailAction is contained in the effects stack R

® AndUis Mail . We can calculate U from R and DBIOAction by

Member.Aux [DBIOAction, R, U]
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Implement the interpreter
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Implement the interpreter

® It’s time to implement the interpreter over effects!
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Implement the interpreter

® It’s time to implement the interpreter over effects!
® We’ll make DBIOAction interpreter at first
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Implement the interpreter

® It’s time to implement the interpreter over effects!
® We’ll make DBIOAction interpreter at first
® |t means that we implement
Interpreter [DBIOAction, U, A, Either[Throwable, Al] for
Eff[R: _dbio, Al
® Uis the rest of DBIOAction extracted from R

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33/45


mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter

® It’s time to implement the interpreter over effects!
® We’ll make DBIOAction interpreter at first
It means that we implement
Interpreter [DBIOAction, U, A, Either[Throwable, Al] for
Eff [R: _dbio, Al
® Uis the rest of DBIOAction extracted from R
® Finally runDBIO has this interface:

def runDBIO[R: _dbio, Al(
eff: Eff[R, Al
) (implicit m: Member.Aux[DBIOAction, R, NoFx]): Either[Throwable, Al =
withTransaction { session =>
Eff.run(
Interpret.runInterpreter(eff)(new Interpreter[DBIOAction, NoFx, A, Either[Throwable, Al]l {
/% We implement now! x/
13
)
+
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1st: onPure

® Following Interpreter interface in page 22, we make onPure at first

def onPure(a: A): Eff[NoFx, Either[Throwable, Al]l =
Eff.pure(Right(a))
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1st: onPure

® Following Interpreter interface in page 22, we make onPure at first

def onPure(a: A): Eff[NoFx, Either[Throwable, Al]l =
Eff.pure(Right(a))

® |t’s very easy
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2nd: onEffect

® Next we implement onEffect
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2nd: onEffect

® Next we implement onEffect

def onEffect[X](
x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, Al]
): Eff[NoFx, Either[Throwable, Al] =
x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

® Continuation[U, X, Either[Throwable, Al] reperesents a function whose
interface is X => Eff[U, Either[Throwable, All]
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2nd: onEffect

® Next we implement onEffect

def onEffect[X](
x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, Al]
): Eff[NoFx, Either[Throwable, Al] =
x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

® Continuation[U, X, Either[Throwable, Al] reperesents a function whose
interface is X => Eff[U, Either[Throwable, All]

® First we have to use the pattern matching for x to determine what X is

Ask case Xis Session, and continuation is needed that value
Execute case we don’t know what X is, but Execute has X value
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2nd: onEffect

® Next we implement onEffect

def onEffect[X](
x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, Al]

): Eff[NoFx, Either[Throwable, Al] =
x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

® Continuation[U, X, Either[Throwable, Al] reperesents a function whose
interface is X => Eff[U, Either[Throwable, All]

® First we have to use the pattern matching for x to determine what X is

Ask case Xis Session, and continuation is needed that value
Execute case we don’t know what X is, but Execute has X value

® We can access session because the interpreter is in withTransaction (page 33)
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3rd: onLastEffect and onApplicativeEffect

® These are just type puzzle

x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

def onApplicativeEffect[X, T[_]: Traverse](
xs: T[DBIOAction[X]], continuation: Continuation[NoFx, T[X], Either[Throwable, All
): Eff[NoFx, Either[Throwable, All =
continuation.apply(
xs.map {
case Ask() => session
case Execute(v) => v
}
)

def onLastEffect[X](x: DBIOAction[X], continuation: Continuation[NoFx, X, Unitl): Eff[NoFx, Unit] =
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3rd: onLastEffect and onApplicativeEffect

® These are just type puzzle

def onLastEffect[X](x: DBIOAction[X], continuation: Continuation[NoFx, X, Unitl): Eff[NoFx, Unit] =
x match {
case Ask() => continuation(session)
case Execute(v) => continuation(v)

I

def onApplicativeEffect[X, T[_]: Traverse](
xs: T[DBIOAction[X]], continuation: Continuation[NoFx, T[X], Either[Throwable, All
): Eff[NoFx, Either[Throwable, All =
continuation.apply(
xs.map {
case Ask() => session
case Execute(v) => v
}
)

® | know that it’s very diffcult for us but applicative interpreter is not the scope in this
talk so we’ll skip
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Interpreter for MailAction
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Interpreter for MailAction

® We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction
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Interpreter for MailAction

® We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction

® The interface is Interpreter[MailAction, U, A, (List[Maill, A)] for
Eff[R: _mail, Al

What is (List[Mail], A)?

.
e
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Interpreter for MailAction

® We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction

® The interface is Interpreter[MailAction, U, A, (List[Maill, A)] for
Eff[R: _mail, Al

What is (List[Mail], A)?

o
&
® We try to

© collect e-mails by a new interpreter we’ll create from now
@ execute runDBIO then if the result is successful run sendMail with @’s e-mails.
However if the result is failure sendMail is not call and @’s e-mails will not be sent
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Interpreter for MailAction

® So sendMailAfterDBIO’s interface:

def runMailAfterDBIO[R: _mail: _dbio, U, Al(

eff: Eff[R, Al
) (

implicit ml: Member.Aux[MailAction, R, U], m2: Member.Aux[DBIOAction, U, NoFx]
): Either[Throwable, A] = {

val mailRemoved: Eff[U, (List[Maill, A)] =

Interpret.runInterpreter(eff)(new Interpreter[MailAction, U, A, (List[Maill, A)] {
/% We implement now! x/

o]

runDBIO(mailRemoved).flatMap {
case (mails, a) =>
mails.traverse(sendMail).map(_ => a)

® Note that sendMail is defined on 12 page
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Interpreter for MailAction

® This is it!

trait Interpreter[MailAction, U, A, (List[Maill, A)] {
def onPure(a: A): Eff[U, (List[Maill, A)] =
Eff.pure((Nil, a))

def onEffect[X](
x: MailAction[X], continuation: Continuation[U, X, (List[Maill, A)I
): Eff[U, (List[Maill, A)] =
x match {
case Tell(mail) =>
// "Tell extends MailAction[Unit]® so in this case X' is “Unit"
continuation(()).map {
case (mails, a) => (mail :: mails, a)

}

® onLastEffect and onApplicativeEffect are omited from the slide '©
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Usage

® We can use this like below:

def userUpdateEff[R: _dbio: _maill(
newUserInfo: UserInfo
): Eff[R, Unit] =
for {
_ <- fromDBIO(userUpdate(newUserInfo))
_ <- sendMailEff(Mail(/x very great email from “newUserInfo x/))
} yield ()

val user: UserInfo = 77?7

runMailAfterDBIO(userUpdateEff(user)) match {
case Right(_) => /x Succecss DB and e-mail! 4/
case Left(_) => /x Failure %/

+
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Usage

® We can use this like below:

def userUpdateEff[R: _dbio: _maill(
newUserInfo: UserInfo
): Eff[R, Unit] =
for {
_ <- fromDBIO(userUpdate(newUserInfo))
_ <- sendMailEff(Mail(/x very great email from “newUserInfo x/))
} yield ()

val user: UserInfo = 77?7

runMailAfterDBIO(userUpdateEff(user)) match {
case Right(_) => /x Succecss DB and e-mail! 4/
case Left(_) => /x Failure %/

+

® It looks good, doesn’t it? =
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Discussion: Monad vs Eff

"but I cannot explain this due to the time limit of this talk ‘=
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Discussion: Monad vs Eff

This example can be done by monad (transformer)?

o
i
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Discussion: Monad vs Eff

This example can be done by monad (transformer)?

o
&

® That’s correct, but
L . T . : - »
® in this example only covers a case in which, “if the transaction fails no e-mail is sent
® other cases could exist; for example, maybe we would like to send error e-mails when
the transaction fails
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Discussion: Monad vs Eff

This example can be done by monad (transformer)?

o
e

® That’s correct, but

® in this example only covers a case in which, “if the transaction fails no e-mail is sent”
® other cases could exist; for example, maybe we would like to send error e-mails when
the transaction fails

® If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails

"but I cannot explain this due to the time limit of this talk ‘=
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41/45


mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

o
@

® That’s correct, but

® in this example only covers a case in which, “if the transaction fails no e-mail is sent”
® other cases could exist; for example, maybe we would like to send error e-mails when
the transaction fails

® If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails

* Eff can do that without changing any interfaces, we only change the interperter.”

"but I cannot explain this due to the time limit of this talk ‘=
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Discussion: Monad vs Eff

® Or, we can call sendMail outside of monads

val dbioMail: Writer[List[Mail], DBIO[?]] = ?7?

val (mails, dbio) = dbioMail.run // “Writer' run
withTransaction(dbio.run) match {
case Right(_) => List.traverse(mails) (sendMail)
case Left(_) => // error!

b

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 42/45



mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

® Or, we can call sendMail outside of monads

val dbioMail: Writer[List[Mail], DBIO[?]] = ?7?

val (mails, dbio) = dbioMail.run // “Writer' run
withTransaction(dbio.run) match {
case Right(_) => List.traverse(mails) (sendMail)
case Left(_) => // error!

b

® Indeed it can be done but it’s outside of monad, so it’s maybe not succesful to
reprensenting effects by monad &
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Conclusion

® In this talk, we see that some ways to database 1/O and sending e-mails
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Conclusion

® In this talk, we see that some ways to database 1/O and sending e-mails

® Monad types are embedded its concrete operation for the effect but Eff is not. Types
are just symbols and the concrete operation is given by the interpreter
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Conclusion

® In this talk, we see that some ways to database 1/O and sending e-mails

® Monad types are embedded its concrete operation for the effect but Eff is not. Types
are just symbols and the concrete operation is given by the interpreter

® Therefore an interpreter can do the complex operation which is over some effects
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Conclusion

In this talk, we see that some ways to database 1/0 and sending e-mails

Monad types are embedded its concrete operation for the effect but Eff is not. Types
are just symbols and the concrete operation is given by the interpreter

Therefore an interpreter can do the complex operation which is over some effects

Let’s use Eff!
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Thank you for your attention!
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