
An interpreter handling
over effects for Eff

Yoshimura Hikaru（吉村優）
hikaru_yoshimura@r.recruit.co.jp

Recruit Marketing Partners Co., Ltd.

October 17, 2020 @ ScalaMatsuri 2020

https://github.com/y-yu/scalamatsuri2020 (e6fc40b)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 1 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp
https://github.com/y-yu/scalamatsuri2020
mailto:hikaru_yoshimura@r.recruit.co.jp

Table of contents

1 Who am I?

2 Introduction

3 Low Level Example

4 Monad and Monad Transformer

5 Eff and Interpreter

6 Interpreter Handling over Effects

7 Conclusion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 2 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Who am I?

Twitter @_yyu_
Qiita yyu
GitHub y-yu

• Recruit Marketing Partners Co., Ltd.
• StudySapuri ENGLISH server side(Scala)

• Quantum Information
• but I don’t know well about Quantum annealing…

• Cryptography & Security
• LATEX typesetting

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 3 / 45

https://twitter.com/_yyu_
https://qiita.com/yyu
https://github.com/y-yu
mailto:hikaru_yoshimura@r.recruit.co.jp

Who am I?

Twitter @_yyu_
Qiita yyu
GitHub y-yu

• Recruit Marketing Partners Co., Ltd.
• StudySapuri ENGLISH server side(Scala)

• Quantum Information
• but I don’t know well about Quantum annealing…

• Cryptography & Security
• LATEX typesetting

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 3 / 45

https://twitter.com/_yyu_
https://qiita.com/yyu
https://github.com/y-yu
mailto:hikaru_yoshimura@r.recruit.co.jp

Concrete case I’ll talk about

In this talk, we think about one concrete case:

“ Read & Write data to database with the transaction

”

• This is very common case in the programming, but there are many ways to do it

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 4 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Concrete case I’ll talk about

In this talk, we think about one concrete case:

“ Read & Write data to database with the transaction

”

• This is very common case in the programming, but there are many ways to do it

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 4 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Concrete case I’ll talk about

In this talk, we think about one concrete case:

“ Read & Write data to database with the transaction

”• This is very common case in the programming, but there are many ways to do it

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 4 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()

val session = transactionManager.begin()

databaseOperation(

// If you want to rollback,

// call `session.fail`

session

)

if (transactionManager.commit(session))

/∗ Successful ∗/

else

/∗ Failure ∗/

• It’s (maybe) used in tranditional
languages like C
• You know, that way has some problems:

Could programmers forget to write begin and commit?

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()

val session = transactionManager.begin()

databaseOperation(

// If you want to rollback,

// call `session.fail`

session

)

if (transactionManager.commit(session))

/∗ Successful ∗/

else

/∗ Failure ∗/

• It’s (maybe) used in tranditional
languages like C
• You know, that way has some problems:

Could programmers forget to write begin and commit?

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()

val session = transactionManager.begin()

databaseOperation(

// If you want to rollback,

// call `session.fail`

session

)

if (transactionManager.commit(session))

/∗ Successful ∗/

else

/∗ Failure ∗/

• It’s (maybe) used in tranditional
languages like C

• You know, that way has some problems:

Could programmers forget to write begin and commit?

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()

val session = transactionManager.begin()

databaseOperation(

// If you want to rollback,

// call `session.fail`

session

)

if (transactionManager.commit(session))

/∗ Successful ∗/

else

/∗ Failure ∗/

• It’s (maybe) used in tranditional
languages like C
• You know, that way has some problems:

Could programmers forget to write begin and commit?

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Low level example

val transactionManager = new TM()

val session = transactionManager.begin()

databaseOperation(

// If you want to rollback,

// call `session.fail`

session

)

if (transactionManager.commit(session))

/∗ Successful ∗/

else

/∗ Failure ∗/

• It’s (maybe) used in tranditional
languages like C
• You know, that way has some problems:

Could programmers forget to write begin and commit?

　　
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 5 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Loan pattern

• If the problem is forgetting, we can use Loan pattern:

def withTransaction(

f: Session => A

): Either[Throwable, A] = {

val session = transactionManager.begin()

val a = f(session)

if (transactionManager.commit(session)) Right(a)

else Left(new RuntimeException())

}

withTransaction { session =>

something.databaseOperation(session)

}

• withTransaction takes a function f

• And then execute it inside the begin
and commit

Is Loan pattern the silver bullet?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 6 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Loan pattern

• If the problem is forgetting, we can use Loan pattern:

def withTransaction(

f: Session => A

): Either[Throwable, A] = {

val session = transactionManager.begin()

val a = f(session)

if (transactionManager.commit(session)) Right(a)

else Left(new RuntimeException())

}

withTransaction { session =>

something.databaseOperation(session)

}

• withTransaction takes a function f

• And then execute it inside the begin
and commit

Is Loan pattern the silver bullet?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 6 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Loan pattern

• If the problem is forgetting, we can use Loan pattern:

def withTransaction(

f: Session => A

): Either[Throwable, A] = {

val session = transactionManager.begin()

val a = f(session)

if (transactionManager.commit(session)) Right(a)

else Left(new RuntimeException())

}

withTransaction { session =>

something.databaseOperation(session)

}

• withTransaction takes a function f

• And then execute it inside the begin
and commit

Is Loan pattern the silver bullet?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 6 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Loan pattern

• If the problem is forgetting, we can use Loan pattern:

def withTransaction(

f: Session => A

): Either[Throwable, A] = {

val session = transactionManager.begin()

val a = f(session)

if (transactionManager.commit(session)) Right(a)

else Left(new RuntimeException())

}

withTransaction { session =>

something.databaseOperation(session)

}

• withTransaction takes a function f

• And then execute it inside the begin
and commit

Is Loan pattern the silver bullet?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 6 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Nested loan pattern

• We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =

withTransaction { session =>

something.databaseOperation(session)

}

withTransaction { session =>

/∗ something using session ∗/

ops()

}

Use withTransaction in
the other withTransaction 　　

• No one wants to do that but it’s allowed…　　
• Indeed, we don’t actually “forget” to write begin and commit, but the other problem

remains
• In addtion, the first low level example also has this problem

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 7 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Nested loan pattern

• We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =

withTransaction { session =>

something.databaseOperation(session)

}

withTransaction { session =>

/∗ something using session ∗/

ops()

}

Use withTransaction in
the other withTransaction 　　

• No one wants to do that but it’s allowed…　　
• Indeed, we don’t actually “forget” to write begin and commit, but the other problem

remains
• In addtion, the first low level example also has this problem

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 7 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Nested loan pattern

• We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =

withTransaction { session =>

something.databaseOperation(session)

}

withTransaction { session =>

/∗ something using session ∗/

ops()

}

Use withTransaction in
the other withTransaction 　　

• No one wants to do that but it’s allowed…　　

• Indeed, we don’t actually “forget” to write begin and commit, but the other problem
remains
• In addtion, the first low level example also has this problem

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 7 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Nested loan pattern

• We can use withTransaction illegally like below

def ops(): Either[Throwable, ?] =

withTransaction { session =>

something.databaseOperation(session)

}

withTransaction { session =>

/∗ something using session ∗/

ops()

}

Use withTransaction in
the other withTransaction 　　

• No one wants to do that but it’s allowed…　　
• Indeed, we don’t actually “forget” to write begin and commit, but the other problem

remains
• In addtion, the first low level example also has this problem

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 7 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

• We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

run: Session => A

) {

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a)))

def flatMap[B](f: A => DBIO[B]): DBIO[B] =

DBIO(s => f(run(s)).run(s))

}

• And define this utility function: ask

object DBIO {

def ask: DBIO[Session] =

DBIO(s => s)

}

• We can implement code that access to the database with DBIO

def greatDBOps1: DBIO[?] =

DBIO.ask map { session: Session =>

session.execute(/∗ Great Operation! ∗/)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

• We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

run: Session => A

) {

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a)))

def flatMap[B](f: A => DBIO[B]): DBIO[B] =

DBIO(s => f(run(s)).run(s))

}

• And define this utility function: ask

object DBIO {

def ask: DBIO[Session] =

DBIO(s => s)

}

• We can implement code that access to the database with DBIO

def greatDBOps1: DBIO[?] =

DBIO.ask map { session: Session =>

session.execute(/∗ Great Operation! ∗/)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

• We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

run: Session => A

) {

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a)))

def flatMap[B](f: A => DBIO[B]): DBIO[B] =

DBIO(s => f(run(s)).run(s))

}

• And define this utility function: ask

object DBIO {

def ask: DBIO[Session] =

DBIO(s => s)

}

• We can implement code that access to the database with DBIO

def greatDBOps1: DBIO[?] =

DBIO.ask map { session: Session =>

session.execute(/∗ Great Operation! ∗/)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

• We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

run: Session => A

) {

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a)))

def flatMap[B](f: A => DBIO[B]): DBIO[B] =

DBIO(s => f(run(s)).run(s))

}

• And define this utility function: ask

object DBIO {

def ask: DBIO[Session] =

DBIO(s => s)

}

• We can implement code that access to the database with DBIO

def greatDBOps1: DBIO[?] =

DBIO.ask map { session: Session =>

session.execute(/∗ Great Operation! ∗/)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

• We can use map and flatMap instead of raw Loan pattern

case class DBIO[A](

run: Session => A

) {

def map[B](f: A => B): DBIO[B] =

flatMap(a => DBIO(_ => f(a)))

def flatMap[B](f: A => DBIO[B]): DBIO[B] =

DBIO(s => f(run(s)).run(s))

}

• And define this utility function: ask

object DBIO {

def ask: DBIO[Session] =

DBIO(s => s)

}

• We can implement code that access to the database with DBIO

def greatDBOps1: DBIO[?] =

DBIO.ask map { session: Session =>

session.execute(/∗ Great Operation! ∗/)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 8 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

• greatDBOps1, greatDBOps2 and greatDBOps3

run in the same transaction　　

Is there well-known monad
which can do the same things?

val dbio: DBIO[Int] = for {

a <- greatDBOps1

b <- greatDBOps2

c <- greatDBOps3(a, b)

} yield c

withTransaction { session =>

dbio.run(session)

}

• Yes, DBIO[A] is the same as Reader[Session, A]

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 9 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

• greatDBOps1, greatDBOps2 and greatDBOps3

run in the same transaction　　

Is there well-known monad
which can do the same things?

val dbio: DBIO[Int] = for {

a <- greatDBOps1

b <- greatDBOps2

c <- greatDBOps3(a, b)

} yield c

withTransaction { session =>

dbio.run(session)

}

• Yes, DBIO[A] is the same as Reader[Session, A]

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 9 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad

• greatDBOps1, greatDBOps2 and greatDBOps3

run in the same transaction　　

Is there well-known monad
which can do the same things?

val dbio: DBIO[Int] = for {

a <- greatDBOps1

b <- greatDBOps2

c <- greatDBOps3(a, b)

} yield c

withTransaction { session =>

dbio.run(session)

}

• Yes, DBIO[A] is the same as Reader[Session, A]

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 9 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Next step

• DBIO represents just a Database I/O
• but we sometimes want to use other (side) effects…

What are the other side effects?

　　
• It’s time to go to the next step:

“We want to send e-mails only if the database transaction is successful

”

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 10 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Next step

• DBIO represents just a Database I/O
• but we sometimes want to use other (side) effects…

What are the other side effects?

　　
• It’s time to go to the next step:

“We want to send e-mails only if the database transaction is successful

”

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 10 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Next step

• DBIO represents just a Database I/O
• but we sometimes want to use other (side) effects…

What are the other side effects?

　　

• It’s time to go to the next step:

“We want to send e-mails only if the database transaction is successful

”

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 10 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Next step

• DBIO represents just a Database I/O
• but we sometimes want to use other (side) effects…

What are the other side effects?

　　
• It’s time to go to the next step:

“We want to send e-mails only if the database transaction is successful

”Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 10 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email

• Sending e-mail is as popular as using database
• Database has transactions but e-mail doesn’t
• So we want to send e-mail after all operations are done successfully

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 11 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email

• Sending e-mail is as popular as using database

• Database has transactions but e-mail doesn’t
• So we want to send e-mail after all operations are done successfully

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 11 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email

• Sending e-mail is as popular as using database
• Database has transactions but e-mail doesn’t

• So we want to send e-mail after all operations are done successfully

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 11 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email

• Sending e-mail is as popular as using database
• Database has transactions but e-mail doesn’t
• So we want to send e-mail after all operations are done successfully

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 11 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Naive approach

• There is a sending e-mail function that
has such an interface:
def sendMail(

mail: Mail

): Either[Throwable, Unit]

• Mail consists of to-address,
from-address, title and email body

• And then we use this after the database
transaction

val result = withTransaction { session =>

dbio.run(session)

}

if (result.isRight)

sendMail(greatEmail) match {

case Left(e) => /∗ something ∗/

case _ => ()

}

The code distance between sendMail and DB operation is too far away

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 12 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Naive approach

• There is a sending e-mail function that
has such an interface:
def sendMail(

mail: Mail

): Either[Throwable, Unit]

• Mail consists of to-address,
from-address, title and email body

• And then we use this after the database
transaction

val result = withTransaction { session =>

dbio.run(session)

}

if (result.isRight)

sendMail(greatEmail) match {

case Left(e) => /∗ something ∗/

case _ => ()

}

The code distance between sendMail and DB operation is too far away

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 12 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Naive approach

• There is a sending e-mail function that
has such an interface:
def sendMail(

mail: Mail

): Either[Throwable, Unit]

• Mail consists of to-address,
from-address, title and email body

• And then we use this after the database
transaction

val result = withTransaction { session =>

dbio.run(session)

}

if (result.isRight)

sendMail(greatEmail) match {

case Left(e) => /∗ something ∗/

case _ => ()

}

The code distance between sendMail and DB operation is too far away

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 12 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Naive approach

• There is a sending e-mail function that
has such an interface:
def sendMail(

mail: Mail

): Either[Throwable, Unit]

• Mail consists of to-address,
from-address, title and email body

• And then we use this after the database
transaction

val result = withTransaction { session =>

dbio.run(session)

}

if (result.isRight)

sendMail(greatEmail) match {

case Left(e) => /∗ something ∗/

case _ => ()

}

The code distance between sendMail and DB operation is too far away

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 12 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion

• We implement the DB operating function that returns DBIO
def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =

DBIO.ask map { session =>

/∗ Great user update logic is here!!!! ∗/

}

We want to write sending e-mail logic here too!

　　
• But actually we can only write e-mail logic behind the withTransaction　　

• It means that our code is low cohesion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 13 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion

• We implement the DB operating function that returns DBIO
def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =

DBIO.ask map { session =>

/∗ Great user update logic is here!!!! ∗/

}

We want to write sending e-mail logic here too!

　　
• But actually we can only write e-mail logic behind the withTransaction　　

• It means that our code is low cohesion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 13 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion

• We implement the DB operating function that returns DBIO
def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =

DBIO.ask map { session =>

/∗ Great user update logic is here!!!! ∗/

}

We want to write sending e-mail logic here too!

　　

• But actually we can only write e-mail logic behind the withTransaction　　
• It means that our code is low cohesion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 13 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

What is the code distance? It’s known as cohesion

• We implement the DB operating function that returns DBIO
def userUpdate(newUserInfo: UserInfo): DBIO[Unit] =

DBIO.ask map { session =>

/∗ Great user update logic is here!!!! ∗/

}

We want to write sending e-mail logic here too!

　　
• But actually we can only write e-mail logic behind the withTransaction　　

• It means that our code is low cohesion
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 13 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

OK. How about to return DBIO[Either[Throwable, A]]?

def userUpdate(

newUserInfo: UserInfo

): DBIO[Either[Throwable, Unit]] =

DBIO.ask map { session =>

val result = /∗ Great user update logic ∗/

val mail = /∗ Great e-mail from newUserInfo ∗/

if (result)

sendMail(greatEmail)

else

Left(/∗ error! ∗/)

}

• Is it OK?　　
• This code appears to have high

cohesion, unlike before

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 14 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

OK. How about to return DBIO[Either[Throwable, A]]?

def userUpdate(

newUserInfo: UserInfo

): DBIO[Either[Throwable, Unit]] =

DBIO.ask map { session =>

val result = /∗ Great user update logic ∗/

val mail = /∗ Great e-mail from newUserInfo ∗/

if (result)

sendMail(greatEmail)

else

Left(/∗ error! ∗/)

}

• Is it OK?　　
• This code appears to have high

cohesion, unlike before

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 14 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

OK. How about to return DBIO[Either[Throwable, A]]?

def userUpdate(

newUserInfo: UserInfo

): DBIO[Either[Throwable, Unit]] =

DBIO.ask map { session =>

val result = /∗ Great user update logic ∗/

val mail = /∗ Great e-mail from newUserInfo ∗/

if (result)

sendMail(greatEmail)

else

Left(/∗ error! ∗/)

}

• Is it OK?　　

• This code appears to have high
cohesion, unlike before

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 14 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Cohesion

OK. How about to return DBIO[Either[Throwable, A]]?

def userUpdate(

newUserInfo: UserInfo

): DBIO[Either[Throwable, Unit]] =

DBIO.ask map { session =>

val result = /∗ Great user update logic ∗/

val mail = /∗ Great e-mail from newUserInfo ∗/

if (result)

sendMail(greatEmail)

else

Left(/∗ error! ∗/)

}

• Is it OK?　　
• This code appears to have high

cohesion, unlike before

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 14 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad transformer

We can use monad transformer such as EitherT

• Monad transformer takes a monadic type constructor and turns it into a monad

def userUpdateT(

newUserInfo: UserInfo

): EitherT[DBIO, Throwable, Unit] =

userUpdate(newUserInfo).toEitherT

• Scala’s for only can access the most outer
monad
• So if we use EitherT rather than Either, it

will be easy to access Either monad inside
DBIO

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 15 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Monad transformer

We can use monad transformer such as EitherT

• Monad transformer takes a monadic type constructor and turns it into a monad

def userUpdateT(

newUserInfo: UserInfo

): EitherT[DBIO, Throwable, Unit] =

userUpdate(newUserInfo).toEitherT

• Scala’s for only can access the most outer
monad
• So if we use EitherT rather than Either, it

will be easy to access Either monad inside
DBIO

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 15 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email failure example

• You maybe know, both DBIO[Either[Throwable, A]] and
EitherT[DBIO, Throwable, A] have such a problem:

The e-mail in userUpdate will be sent
even if maybeFail fails

val dbio = for {

// With sending e-mail here

_ <- userUpdate(newUserInfo)

_ <- maybeFail // 　　 　　
} yield ???

withTransaction(dbio.run)

It’s no good that database I/O are rollbacked however e-mail has been sent!

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 16 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email failure example

• You maybe know, both DBIO[Either[Throwable, A]] and
EitherT[DBIO, Throwable, A] have such a problem:

The e-mail in userUpdate will be sent
even if maybeFail fails

val dbio = for {

// With sending e-mail here

_ <- userUpdate(newUserInfo)

_ <- maybeFail // 　　 　　
} yield ???

withTransaction(dbio.run)

It’s no good that database I/O are rollbacked however e-mail has been sent!

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 16 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Email failure example

• You maybe know, both DBIO[Either[Throwable, A]] and
EitherT[DBIO, Throwable, A] have such a problem:

The e-mail in userUpdate will be sent
even if maybeFail fails

val dbio = for {

// With sending e-mail here

_ <- userUpdate(newUserInfo)

_ <- maybeFail // 　　 　　
} yield ???

withTransaction(dbio.run)

It’s no good that database I/O are rollbacked however e-mail has been sent!

　　
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 16 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

• We want both cohesion and consistency
• Up to this point of my talk, there seems to be a trade-off between the two
• In my opinion, there are two ways to combine them:

1 Make an original moand to do it

2 Use Eff and implement its suitable interpreter for the trade-off

• First, I will describe option 2 . Then I will present my opinion on which is the better
choice

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

• We want both cohesion and consistency

• Up to this point of my talk, there seems to be a trade-off between the two
• In my opinion, there are two ways to combine them:

1 Make an original moand to do it

2 Use Eff and implement its suitable interpreter for the trade-off

• First, I will describe option 2 . Then I will present my opinion on which is the better
choice

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

• We want both cohesion and consistency
• Up to this point of my talk, there seems to be a trade-off between the two

• In my opinion, there are two ways to combine them:

1 Make an original moand to do it

2 Use Eff and implement its suitable interpreter for the trade-off

• First, I will describe option 2 . Then I will present my opinion on which is the better
choice

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

• We want both cohesion and consistency
• Up to this point of my talk, there seems to be a trade-off between the two
• In my opinion, there are two ways to combine them:

1 Make an original moand to do it

2 Use Eff and implement its suitable interpreter for the trade-off

• First, I will describe option 2 . Then I will present my opinion on which is the better
choice

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Summary up to this point

• We want both cohesion and consistency
• Up to this point of my talk, there seems to be a trade-off between the two
• In my opinion, there are two ways to combine them:

1 Make an original moand to do it

2 Use Eff and implement its suitable interpreter for the trade-off

• First, I will describe option 2 . Then I will present my opinion on which is the better
choice

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 17 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Table of contents

1 Who am I?

2 Introduction

3 Low Level Example

4 Monad and Monad Transformer

5 Eff and Interpreter

6 Interpreter Handling over Effects

7 Conclusion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 18 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

What is Eff∗

• Eff is a type constructor which takes two types: R and A

Eff[R, A]

Effects stack Result type

DBIO Either NoFxHead

Bottom

• To simplify in this talk, effects stack is a type level stack like this　　
• In this figure, the effects stack has DBIO and Either

∗In this talk, Eff is based on atnos-eff.
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 19 / 45

https://github.com/atnos-org/eff
mailto:hikaru_yoshimura@r.recruit.co.jp

What is Eff∗

• Eff is a type constructor which takes two types: R and A

Eff[R, A]

Effects stack Result type

DBIO Either NoFxHead

Bottom

• To simplify in this talk, effects stack is a type level stack like this　　
• In this figure, the effects stack has DBIO and Either

∗In this talk, Eff is based on atnos-eff.
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 19 / 45

https://github.com/atnos-org/eff
mailto:hikaru_yoshimura@r.recruit.co.jp

What is Eff∗

• Eff is a type constructor which takes two types: R and A

Eff[R, A]

Effects stack Result type

DBIO Either NoFxHead

Bottom

• To simplify in this talk, effects stack is a type level stack like this　　
• In this figure, the effects stack has DBIO and Either

∗In this talk, Eff is based on atnos-eff.
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 19 / 45

https://github.com/atnos-org/eff
mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

• We need interpreters to fire real effects
• When run an interpreter, it takes type(s) from R and execute real effects

R︷ ︸︸ ︷
Either NoFx

DBIO
Pop

Interpreter

　　 Firing　　
for example, DB access

• It means that types in R are just “symbols” so they don’t have the logic for real
effects
• Firing effect logics are given by interpreters

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 20 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter
• We need interpreters to fire real effects

• When run an interpreter, it takes type(s) from R and execute real effects
R︷ ︸︸ ︷

Either NoFx
DBIO

Pop

Interpreter

　　 Firing　　
for example, DB access

• It means that types in R are just “symbols” so they don’t have the logic for real
effects
• Firing effect logics are given by interpreters

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 20 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter
• We need interpreters to fire real effects
• When run an interpreter, it takes type(s) from R and execute real effects

R︷ ︸︸ ︷
Either NoFx

DBIO
Pop

Interpreter

　　 Firing　　
for example, DB access

• It means that types in R are just “symbols” so they don’t have the logic for real
effects
• Firing effect logics are given by interpreters

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 20 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter
• We need interpreters to fire real effects
• When run an interpreter, it takes type(s) from R and execute real effects

R︷ ︸︸ ︷
Either NoFx

DBIO
Pop

Interpreter

　　 Firing　　
for example, DB access

• It means that types in R are just “symbols” so they don’t have the logic for real
effects
• Firing effect logics are given by interpreters

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 20 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Intuition for Eff and DI

• That’s similar to dependecy injection(DI), I think　　
DI Interface← Implementation
Eff Type in effects stack← Interpreter

• And then

How do we implement
an interpreter?

　　

R︷ ︸︸ ︷
Either NoFx

DBIO
Pop

Interpreter

　　 Firing　　
for example, DB access

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 21 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Intuition for Eff and DI

• That’s similar to dependecy injection(DI), I think　　
DI Interface← Implementation
Eff Type in effects stack← Interpreter

• And then

How do we implement
an interpreter?

　　

R︷ ︸︸ ︷
Either NoFx

DBIO
Pop

Interpreter

　　 Firing　　
for example, DB access

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 21 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter’s interface (atnos-eff)

• This is interface of atons-eff Interpreter

trait Interpreter[M[_], R, A, B] {

def onPure(a: A): Eff[R, B]

def onEffect[X](x: M[X], continuation: Continuation[R, X, B]): Eff[R, B]

def onLastEffect[X](x: M[X], continuation: Continuation[R, X, Unit]): Eff[R, Unit]

def onApplicativeEffect[X, T[_] : Traverse](

xs: T[M[X]], continuation: Continuation[R, T[X], B]

): Eff[R, B]

}

• https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/
org/atnos/eff/Interpret.scala

What does it mean?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 22 / 45

https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/org/atnos/eff/Interpret.scala
https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/org/atnos/eff/Interpret.scala
mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter’s interface (atnos-eff)

• This is interface of atons-eff Interpreter

trait Interpreter[M[_], R, A, B] {

def onPure(a: A): Eff[R, B]

def onEffect[X](x: M[X], continuation: Continuation[R, X, B]): Eff[R, B]

def onLastEffect[X](x: M[X], continuation: Continuation[R, X, Unit]): Eff[R, Unit]

def onApplicativeEffect[X, T[_] : Traverse](

xs: T[M[X]], continuation: Continuation[R, T[X], B]

): Eff[R, B]

}

• https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/
org/atnos/eff/Interpret.scala

What does it mean?

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 22 / 45

https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/org/atnos/eff/Interpret.scala
https://github.com/atnos-org/eff/blob/master/shared/src/main/scala/org/atnos/eff/Interpret.scala
mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

• We think that we run an interpreter for DBIO, to R that is DBIO Either NoFx of
Eff[R, A]

U︷ ︸︸ ︷
Either NoFx

DBIO
Pop

• An interpreter provides two values for us:
1 DBIO[X]

2 continuation: X => Eff[U, B]

to implement the monad instace for the effect
• So we define map and flatMap from the two parts

What is continuation?

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 23 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

• We think that we run an interpreter for DBIO, to R that is DBIO Either NoFx of
Eff[R, A]

U︷ ︸︸ ︷
Either NoFx

DBIO
Pop

• An interpreter provides two values for us:
1 DBIO[X]

2 continuation: X => Eff[U, B]

to implement the monad instace for the effect
• So we define map and flatMap from the two parts

What is continuation?

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 23 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

• We think that we run an interpreter for DBIO, to R that is DBIO Either NoFx of
Eff[R, A]

U︷ ︸︸ ︷
Either NoFx

DBIO
Pop

• An interpreter provides two values for us:
1 DBIO[X]

2 continuation: X => Eff[U, B]

to implement the monad instace for the effect
• So we define map and flatMap from the two parts

What is continuation?

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 23 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter

• We think that we run an interpreter for DBIO, to R that is DBIO Either NoFx of
Eff[R, A]

U︷ ︸︸ ︷
Either NoFx

DBIO
Pop

• An interpreter provides two values for us:
1 DBIO[X]

2 continuation: X => Eff[U, B]

to implement the monad instace for the effect
• So we define map and flatMap from the two parts

What is continuation?

　　
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 23 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Notation

• First, we introduce a new notation to R before explain
• Assuming that R: _dbio: _either, it means R is DBIO Either NoFx

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 24 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Continuation for interpreter

• There are some DBIO operations in the Eff[R: _dbio: _either, A]

Interpreter for DBIO

Interpreter for DBIOEff[R: _dbio: _either, A]

· · ·

· · ·

Eff[R: _either, DBIO[A]]

Continuation

• First interpreter can access the continuation as a function, which processes effect
recursivily

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 25 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Continuation for interpreter

• There are some DBIO operations in the Eff[R: _dbio: _either, A]

Interpreter for DBIO

Interpreter for DBIOEff[R: _dbio: _either, A]

· · ·

· · ·

Eff[R: _either, DBIO[A]]

Continuation

• First interpreter can access the continuation as a function, which processes effect
recursivily

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 25 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Extract types by interpreter

• Some types in the effects stack R can be extracted by one interpreter

NoFxDBIO[Either]
Pop

• On the other hand, it’s good　　 that an interpreter doesn’t extract just any types
from the effects stack

DBIO Either NoFxVoid
But I will do something…

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 26 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Extract types by interpreter

• Some types in the effects stack R can be extracted by one interpreter

NoFxDBIO[Either]
Pop

• On the other hand, it’s good　　 that an interpreter doesn’t extract just any types
from the effects stack

DBIO Either NoFxVoid
But I will do something…

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 26 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Extract types by interpreter

• Some types in the effects stack R can be extracted by one interpreter

NoFxDBIO[Either]
Pop

• On the other hand, it’s good　　 that an interpreter doesn’t extract just any types
from the effects stack

DBIO Either NoFxVoid
But I will do something…

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 26 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Table of contents

1 Who am I?

2 Introduction

3 Low Level Example

4 Monad and Monad Transformer

5 Eff and Interpreter

6 Interpreter Handling over Effects

7 Conclusion

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 27 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Revisit the problem

• We want to take the both cohesion and consistency between the database
transaction and sending e-mails

• “Over effects” means that
• There are two effects: the database I/O and sending e-mails
• If database I/O with trasaction would fail, sending e-mails must not be done
• What an effect should be run depends on that the other effect would be done

successfully or not

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 28 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Revisit the problem

• We want to take the both cohesion and consistency between the database
transaction and sending e-mails
• “Over effects” means that

• There are two effects: the database I/O and sending e-mails
• If database I/O with trasaction would fail, sending e-mails must not be done
• What an effect should be run depends on that the other effect would be done

successfully or not

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 28 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Create a type constructor

• First we make a type constructor for e-mail

sealed trait MailAction[A]

case class Tell(

mail: Mail

) extends MailAction[Unit]

This is just like Writer monad, isn’t it?

　　
• And we define DBIOAction too

sealed trait DBIOAction[A]

case class Ask() extends DBIOAction[Session]

case class Execute[A](

value: A

) extends DBIOAction[A]

It’s like Reader moand, the same as DBIO

　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 29 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Utilty functions

• Then we create utilty functions:
1 First one sendMailEff is for making Eff[R: _mail, Unit]

def sendMailEff[R: _mail](

mail: Mail

): Eff[R, Unit] = Eff.send[MailAction, R, Unit](Tell(mail))

2 Second one fromDBIO is used to convert DBIO[A] into Eff[R: _dbio, A]

def fromDBIO[R: _dbio, A](

dbio: DBIO[A]

): Eff[R, A] =

for {

session <- Eff.send[DBIOAction, R, Session](Ask())

a <- Eff.send[DBIOAction, R, A](Execute(dbio.run(session)))

} yield a

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 30 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Type parameters in interpreter

• We have already seen, Interpreter (page 22) has such a type parametrs:
trait Interpreter[M[_], R, A, B]

which mean that　　

Interpreter[M[_], R, A, B]

Type constructor
to be extracted

Extracted
effects stack

Inputed Eff

result type

Result type

It’s very complicated　　
I want to see examples!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 31 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Type parameters in interpreter

• We have already seen, Interpreter (page 22) has such a type parametrs:
trait Interpreter[M[_], R, A, B]

which mean that　　

Interpreter[M[_], R, A, B]

Type constructor
to be extracted

Extracted
effects stack

Inputed Eff

result type

Result type

It’s very complicated　　
I want to see examples!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 31 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Example

Eff[R: _dbio: _mail, A]

Interpreter[DBIOAction, U, A, Either[Throwable, A]]

Eff[R: _mail, Either[Throwable, A]]

• Note that R: _mail means MailAction is contained in the effects stack R

• And U is Mail NoFx . We can calculate U from R and DBIOAction by
Member.Aux[DBIOAction, R, U]

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 32 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter

• It’s time to implement the interpreter over effects!
• We’ll make DBIOAction interpreter at first
• It means that we implement
Interpreter[DBIOAction, U, A, Either[Throwable, A]] for
Eff[R: _dbio, A]
• U is the rest of DBIOAction extracted from R

• Finally runDBIO has this interface:
def runDBIO[R: _dbio, A](

eff: Eff[R, A]

)(implicit m: Member.Aux[DBIOAction, R, NoFx]): Either[Throwable, A] =

withTransaction { session =>

Eff.run(

Interpret.runInterpreter(eff)(new Interpreter[DBIOAction, NoFx, A, Either[Throwable, A]] {

/∗ We implement now! ∗/

})

)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter
• It’s time to implement the interpreter over effects!

• We’ll make DBIOAction interpreter at first
• It means that we implement
Interpreter[DBIOAction, U, A, Either[Throwable, A]] for
Eff[R: _dbio, A]
• U is the rest of DBIOAction extracted from R

• Finally runDBIO has this interface:
def runDBIO[R: _dbio, A](

eff: Eff[R, A]

)(implicit m: Member.Aux[DBIOAction, R, NoFx]): Either[Throwable, A] =

withTransaction { session =>

Eff.run(

Interpret.runInterpreter(eff)(new Interpreter[DBIOAction, NoFx, A, Either[Throwable, A]] {

/∗ We implement now! ∗/

})

)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter
• It’s time to implement the interpreter over effects!
• We’ll make DBIOAction interpreter at first

• It means that we implement
Interpreter[DBIOAction, U, A, Either[Throwable, A]] for
Eff[R: _dbio, A]
• U is the rest of DBIOAction extracted from R

• Finally runDBIO has this interface:
def runDBIO[R: _dbio, A](

eff: Eff[R, A]

)(implicit m: Member.Aux[DBIOAction, R, NoFx]): Either[Throwable, A] =

withTransaction { session =>

Eff.run(

Interpret.runInterpreter(eff)(new Interpreter[DBIOAction, NoFx, A, Either[Throwable, A]] {

/∗ We implement now! ∗/

})

)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter
• It’s time to implement the interpreter over effects!
• We’ll make DBIOAction interpreter at first
• It means that we implement
Interpreter[DBIOAction, U, A, Either[Throwable, A]] for
Eff[R: _dbio, A]
• U is the rest of DBIOAction extracted from R

• Finally runDBIO has this interface:
def runDBIO[R: _dbio, A](

eff: Eff[R, A]

)(implicit m: Member.Aux[DBIOAction, R, NoFx]): Either[Throwable, A] =

withTransaction { session =>

Eff.run(

Interpret.runInterpreter(eff)(new Interpreter[DBIOAction, NoFx, A, Either[Throwable, A]] {

/∗ We implement now! ∗/

})

)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Implement the interpreter
• It’s time to implement the interpreter over effects!
• We’ll make DBIOAction interpreter at first
• It means that we implement
Interpreter[DBIOAction, U, A, Either[Throwable, A]] for
Eff[R: _dbio, A]
• U is the rest of DBIOAction extracted from R

• Finally runDBIO has this interface:
def runDBIO[R: _dbio, A](

eff: Eff[R, A]

)(implicit m: Member.Aux[DBIOAction, R, NoFx]): Either[Throwable, A] =

withTransaction { session =>

Eff.run(

Interpret.runInterpreter(eff)(new Interpreter[DBIOAction, NoFx, A, Either[Throwable, A]] {

/∗ We implement now! ∗/

})

)

}

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 33 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

1st: onPure

• Following Interpreter interface in page 22, we make onPure at first
def onPure(a: A): Eff[NoFx, Either[Throwable, A]] =

Eff.pure(Right(a))

• It’s very easy　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 34 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

1st: onPure

• Following Interpreter interface in page 22, we make onPure at first
def onPure(a: A): Eff[NoFx, Either[Throwable, A]] =

Eff.pure(Right(a))

• It’s very easy　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 34 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

2nd: onEffect

• Next we implement onEffect

def onEffect[X](

x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, A]]

): Eff[NoFx, Either[Throwable, A]] =

x match {

case Ask() => continuation(session)

case Execute(v) => continuation(v)

}

• Continuation[U, X, Either[Throwable, A]] reperesents a function whose
interface is X => Eff[U, Either[Throwable, A]]

• First we have to use the pattern matching for x to determine what X is
Ask case X is Session, and continuation is needed that value
Execute case we don’t know what X is, but Execute has X value　　
• We can access session because the interpreter is in withTransaction (page 33)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 35 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

2nd: onEffect

• Next we implement onEffect
def onEffect[X](

x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, A]]

): Eff[NoFx, Either[Throwable, A]] =

x match {

case Ask() => continuation(session)

case Execute(v) => continuation(v)

}

• Continuation[U, X, Either[Throwable, A]] reperesents a function whose
interface is X => Eff[U, Either[Throwable, A]]

• First we have to use the pattern matching for x to determine what X is
Ask case X is Session, and continuation is needed that value
Execute case we don’t know what X is, but Execute has X value　　
• We can access session because the interpreter is in withTransaction (page 33)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 35 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

2nd: onEffect

• Next we implement onEffect
def onEffect[X](

x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, A]]

): Eff[NoFx, Either[Throwable, A]] =

x match {

case Ask() => continuation(session)

case Execute(v) => continuation(v)

}

• Continuation[U, X, Either[Throwable, A]] reperesents a function whose
interface is X => Eff[U, Either[Throwable, A]]

• First we have to use the pattern matching for x to determine what X is
Ask case X is Session, and continuation is needed that value
Execute case we don’t know what X is, but Execute has X value　　

• We can access session because the interpreter is in withTransaction (page 33)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 35 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

2nd: onEffect

• Next we implement onEffect
def onEffect[X](

x: DBIOAction[X], continuation: Continuation[NoFx, X, Either[Throwable, A]]

): Eff[NoFx, Either[Throwable, A]] =

x match {

case Ask() => continuation(session)

case Execute(v) => continuation(v)

}

• Continuation[U, X, Either[Throwable, A]] reperesents a function whose
interface is X => Eff[U, Either[Throwable, A]]

• First we have to use the pattern matching for x to determine what X is
Ask case X is Session, and continuation is needed that value
Execute case we don’t know what X is, but Execute has X value　　
• We can access session because the interpreter is in withTransaction (page 33)

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 35 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

3rd: onLastEffect and onApplicativeEffect

• These are just type puzzle
def onLastEffect[X](x: DBIOAction[X], continuation: Continuation[NoFx, X, Unit]): Eff[NoFx, Unit] =

x match {

case Ask() => continuation(session)

case Execute(v) => continuation(v)

}

def onApplicativeEffect[X, T[_]: Traverse](

xs: T[DBIOAction[X]], continuation: Continuation[NoFx, T[X], Either[Throwable, A]]

): Eff[NoFx, Either[Throwable, A]] =

continuation.apply(

xs.map {

case Ask() => session

case Execute(v) => v

}

)

• I know that it’s very diffcult for us but applicative interpreter is not the scope in this
talk so we’ll skip

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 36 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

3rd: onLastEffect and onApplicativeEffect

• These are just type puzzle
def onLastEffect[X](x: DBIOAction[X], continuation: Continuation[NoFx, X, Unit]): Eff[NoFx, Unit] =

x match {

case Ask() => continuation(session)

case Execute(v) => continuation(v)

}

def onApplicativeEffect[X, T[_]: Traverse](

xs: T[DBIOAction[X]], continuation: Continuation[NoFx, T[X], Either[Throwable, A]]

): Eff[NoFx, Either[Throwable, A]] =

continuation.apply(

xs.map {

case Ask() => session

case Execute(v) => v

}

)

• I know that it’s very diffcult for us but applicative interpreter is not the scope in this
talk so we’ll skip

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 36 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

• We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction
• The interface is Interpreter[MailAction, U, A, (List[Mail], A)] for
Eff[R: _mail, A]

What is (List[Mail], A)?

• We try to

1 collect e-mails by a new interpreter we’ll create from now
2 execute runDBIO then if the result is successful run sendMail with 1 ’s e-mails.

However if the result is failure sendMail is not call and 1 ’s e-mails will not be sent

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 37 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

• We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction

• The interface is Interpreter[MailAction, U, A, (List[Mail], A)] for
Eff[R: _mail, A]

What is (List[Mail], A)?

• We try to

1 collect e-mails by a new interpreter we’ll create from now
2 execute runDBIO then if the result is successful run sendMail with 1 ’s e-mails.

However if the result is failure sendMail is not call and 1 ’s e-mails will not be sent

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 37 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

• We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction
• The interface is Interpreter[MailAction, U, A, (List[Mail], A)] for
Eff[R: _mail, A]

What is (List[Mail], A)?

• We try to

1 collect e-mails by a new interpreter we’ll create from now
2 execute runDBIO then if the result is successful run sendMail with 1 ’s e-mails.

However if the result is failure sendMail is not call and 1 ’s e-mails will not be sent

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 37 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

• We have already gotten the interpreter for DBIOAction so then we’ll create a new
interpreter for MailAction
• The interface is Interpreter[MailAction, U, A, (List[Mail], A)] for
Eff[R: _mail, A]

What is (List[Mail], A)?

• We try to

1 collect e-mails by a new interpreter we’ll create from now
2 execute runDBIO then if the result is successful run sendMail with 1 ’s e-mails.

However if the result is failure sendMail is not call and 1 ’s e-mails will not be sent

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 37 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

• So sendMailAfterDBIO’s interface:
def runMailAfterDBIO[R: _mail: _dbio, U, A](

eff: Eff[R, A]

)(

implicit m1: Member.Aux[MailAction, R, U], m2: Member.Aux[DBIOAction, U, NoFx]

): Either[Throwable, A] = {

val mailRemoved: Eff[U, (List[Mail], A)] =

Interpret.runInterpreter(eff)(new Interpreter[MailAction, U, A, (List[Mail], A)] {

/∗ We implement now! ∗/

})

runDBIO(mailRemoved).flatMap {

case (mails, a) =>

mails.traverse(sendMail).map(_ => a)

}

}

• Note that sendMail is defined on 12 page

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 38 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Interpreter for MailAction

• This is it!
trait Interpreter[MailAction, U, A, (List[Mail], A)] {

def onPure(a: A): Eff[U, (List[Mail], A)] =

Eff.pure((Nil, a))

def onEffect[X](

x: MailAction[X], continuation: Continuation[U, X, (List[Mail], A)]

): Eff[U, (List[Mail], A)] =

x match {

case Tell(mail) =>

// `Tell extends MailAction[Unit]` so in this case `X` is `Unit`

continuation(()).map {

case (mails, a) => (mail :: mails, a)

}

}

}

• onLastEffect and onApplicativeEffect are omited from the slide　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 39 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Usage

• We can use this like below:
def userUpdateEff[R: _dbio: _mail](

newUserInfo: UserInfo

): Eff[R, Unit] =

for {

_ <- fromDBIO(userUpdate(newUserInfo))

_ <- sendMailEff(Mail(/∗ very great email from `newUserInfo`∗/))

} yield ()

val user: UserInfo = ???

runMailAfterDBIO(userUpdateEff(user)) match {

case Right(_) => /∗ Succecss DB and e-mail! ∗/

case Left(_) => /∗ Failure ∗/

}

• It looks good, doesn’t it?　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 40 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Usage

• We can use this like below:
def userUpdateEff[R: _dbio: _mail](

newUserInfo: UserInfo

): Eff[R, Unit] =

for {

_ <- fromDBIO(userUpdate(newUserInfo))

_ <- sendMailEff(Mail(/∗ very great email from `newUserInfo`∗/))

} yield ()

val user: UserInfo = ???

runMailAfterDBIO(userUpdateEff(user)) match {

case Right(_) => /∗ Succecss DB and e-mail! ∗/

case Left(_) => /∗ Failure ∗/

}

• It looks good, doesn’t it?　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 40 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

• That’s correct, but
• in this example only covers a case in which, “if the transaction fails no e-mail is sent”
• other cases could exist; for example, maybe we would like to send error e-mails when

the transaction fails

• If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails
• Eff can do that without changing any interfaces, we only change the interperter.†

†but I cannot explain this due to the time limit of this talk　　
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

• That’s correct, but
• in this example only covers a case in which, “if the transaction fails no e-mail is sent”
• other cases could exist; for example, maybe we would like to send error e-mails when

the transaction fails

• If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails
• Eff can do that without changing any interfaces, we only change the interperter.†

†but I cannot explain this due to the time limit of this talk　　
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

• That’s correct, but
• in this example only covers a case in which, “if the transaction fails no e-mail is sent”
• other cases could exist; for example, maybe we would like to send error e-mails when

the transaction fails

• If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails
• Eff can do that without changing any interfaces, we only change the interperter.†

†but I cannot explain this due to the time limit of this talk　　
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

• That’s correct, but
• in this example only covers a case in which, “if the transaction fails no e-mail is sent”
• other cases could exist; for example, maybe we would like to send error e-mails when

the transaction fails

• If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails

• Eff can do that without changing any interfaces, we only change the interperter.†

†but I cannot explain this due to the time limit of this talk　　
Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

This example can be done by monad (transformer)?

• That’s correct, but
• in this example only covers a case in which, “if the transaction fails no e-mail is sent”
• other cases could exist; for example, maybe we would like to send error e-mails when

the transaction fails

• If we do that with monads, we cannot make it without changing interfaces to
distinguish whether an e-mail will be sent or not when a transaction fails
• Eff can do that without changing any interfaces, we only change the interperter.†
†but I cannot explain this due to the time limit of this talk　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 41 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

• Or, we can call sendMail outside of monads
val dbioMail: Writer[List[Mail], DBIO[?]] = ???

val (mails, dbio) = dbioMail.run // `Writer` run

withTransaction(dbio.run) match {

case Right(_) => List.traverse(mails)(sendMail)

case Left(_) => // error!

}

• Indeed it can be done but it’s outside of monad, so it’s maybe not succesful to
reprensenting effects by monad　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 42 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Discussion: Monad vs Eff

• Or, we can call sendMail outside of monads
val dbioMail: Writer[List[Mail], DBIO[?]] = ???

val (mails, dbio) = dbioMail.run // `Writer` run

withTransaction(dbio.run) match {

case Right(_) => List.traverse(mails)(sendMail)

case Left(_) => // error!

}

• Indeed it can be done but it’s outside of monad, so it’s maybe not succesful to
reprensenting effects by monad　　

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 42 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

• In this talk, we see that some ways to database I/O and sending e-mails
• Monad types are embedded its concrete operation for the effect but Eff is not. Types

are just symbols and the concrete operation is given by the interpreter
• Therefore an interpreter can do the complex operation which is over some effects
• Let’s use Eff!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

• In this talk, we see that some ways to database I/O and sending e-mails

• Monad types are embedded its concrete operation for the effect but Eff is not. Types
are just symbols and the concrete operation is given by the interpreter
• Therefore an interpreter can do the complex operation which is over some effects
• Let’s use Eff!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

• In this talk, we see that some ways to database I/O and sending e-mails
• Monad types are embedded its concrete operation for the effect but Eff is not. Types

are just symbols and the concrete operation is given by the interpreter

• Therefore an interpreter can do the complex operation which is over some effects
• Let’s use Eff!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

• In this talk, we see that some ways to database I/O and sending e-mails
• Monad types are embedded its concrete operation for the effect but Eff is not. Types

are just symbols and the concrete operation is given by the interpreter
• Therefore an interpreter can do the complex operation which is over some effects

• Let’s use Eff!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Conclusion

• In this talk, we see that some ways to database I/O and sending e-mails
• Monad types are embedded its concrete operation for the effect but Eff is not. Types

are just symbols and the concrete operation is given by the interpreter
• Therefore an interpreter can do the complex operation which is over some effects
• Let’s use Eff!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 43 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

References

[1] Oleg Kiselyov and Hiromi Ishii.
Freer monads, more extensible effects.
https://www.slideshare.net/konn/freer-monads-more-extensible-effects-59411772,
2016.

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 44 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

Thank you for your attention!

Yoshimura Hikaru (hikaru_yoshimura@r.recruit.co.jp) An interpreter handling over effects for Eff October 17, 2020 @ ScalaMatsuri 2020 45 / 45

mailto:hikaru_yoshimura@r.recruit.co.jp

	Who am I?
	Introduction
	Low Level Example
	Monad and Monad Transformer
	Eff and Interpreter
	Interpreter Handling over Effects
	Conclusion
	References

